Fix two bugs on how RightContinuousStepFunction is integrated.
Specifically, the integration returned an NaN if the integration was *up to* an NaN (real inegrals are robust); and the results were negative if integrating from a to b where a > b.
This commit is contained in:
parent
ae9a6b9a3f
commit
7371dab4f1
2 changed files with 64 additions and 2 deletions
|
@ -134,7 +134,7 @@ public final class RightContinuousStepFunction extends StepFunction {
|
|||
}
|
||||
|
||||
if(to < from){
|
||||
return integrate(to, from);
|
||||
return -integrate(to, from);
|
||||
}
|
||||
|
||||
double summation = 0.0;
|
||||
|
@ -177,7 +177,7 @@ public final class RightContinuousStepFunction extends StepFunction {
|
|||
final double currentTime = xPoints[i];
|
||||
final double currentHeight = evaluateByIndex(i);
|
||||
|
||||
if(i == xPoints.length-1 || xPoints[i+1] > to){
|
||||
if(i == xPoints.length-1 || xPoints[i+1] >= to){
|
||||
summation += currentHeight * (to - currentTime);
|
||||
return summation;
|
||||
}
|
||||
|
|
|
@ -19,6 +19,9 @@ package ca.joeltherrien.randomforest.utils;
|
|||
import ca.joeltherrien.randomforest.TestUtils;
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertTrue;
|
||||
|
||||
public class RightContinuousStepFunctionIntegrationTest {
|
||||
|
||||
private RightContinuousStepFunction createTestFunction(){
|
||||
|
@ -75,5 +78,64 @@ public class RightContinuousStepFunctionIntegrationTest {
|
|||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testInvertedFromTo(){
|
||||
final RightContinuousStepFunction function = createTestFunction();
|
||||
|
||||
final double area1 = function.integrate(0, 3.0);
|
||||
final double area2 = function.integrate(3.0, 0.0);
|
||||
|
||||
assertEquals(area1, -area2, 0.0000001);
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testIntegratingUpToNan(){
|
||||
// Idea here - you have a function that is valid up to point x where it becomes NaN
|
||||
// You should be able to integrate *up to* point x and not get an NaN
|
||||
|
||||
final RightContinuousStepFunction function1 = new RightContinuousStepFunction(
|
||||
new double[]{1.0, 2.0, 3.0, 4.0},
|
||||
new double[]{1.0, 1.0, 1.0, Double.NaN},
|
||||
0.0);
|
||||
|
||||
|
||||
final double area1 = function1.integrate(0.0, 4.0);
|
||||
assertEquals(3.0, area1, 0.000000001);
|
||||
|
||||
final double nanArea1 = function1.integrate(0.0, 4.0001);
|
||||
assertTrue(Double.isNaN(nanArea1));
|
||||
|
||||
|
||||
// This tests integrating over the defaultY up to the NaN point
|
||||
final RightContinuousStepFunction function2 = new RightContinuousStepFunction(
|
||||
new double[]{1.0, 2.0, 3.0, 4.0},
|
||||
new double[]{Double.NaN, 1.0, 1.0, Double.NaN},
|
||||
1.0);
|
||||
|
||||
|
||||
final double area2 = function2.integrate(0.0, 1.0);
|
||||
assertEquals(1.0, area2, 0.000000001);
|
||||
|
||||
final double nanArea2 = function2.integrate(0.0, 4.0);
|
||||
assertTrue(Double.isNaN(nanArea2));
|
||||
|
||||
|
||||
// This tests integrating between two NaN points. Note that of course for RightContinuousValues carry the previous
|
||||
// value until the next x point, so this is just making sure the code works if the x-value we pass over is NaN
|
||||
final RightContinuousStepFunction function3 = new RightContinuousStepFunction(
|
||||
new double[]{1.0, 2.0, 3.0, 4.0},
|
||||
new double[]{Double.NaN, 1.0, 1.0, Double.NaN},
|
||||
0.0);
|
||||
|
||||
|
||||
final double area3 = function3.integrate(2.0, 4.0);
|
||||
assertEquals(2.0, area3, 0.000000001);
|
||||
|
||||
final double nanArea3 = function3.integrate(0.0, 4.0001);
|
||||
assertTrue(Double.isNaN(nanArea3));
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue