Optimize CompetingRiskResponseCombiner
This commit is contained in:
parent
aa733d5eba
commit
7fba964af9
3 changed files with 72 additions and 138 deletions
|
@ -129,15 +129,8 @@ public class Settings {
|
|||
node.get("events").elements().forEachRemaining(event -> eventList.add(event.asInt()));
|
||||
final int[] events = eventList.stream().mapToInt(i -> i).toArray();
|
||||
|
||||
double[] times = null;
|
||||
// note that times may be null
|
||||
if(node.hasNonNull("times")){
|
||||
final List<Double> timeList = new ArrayList<>();
|
||||
node.get("times").elements().forEachRemaining(time -> timeList.add(time.asDouble()));
|
||||
times = timeList.stream().mapToDouble(db -> db).toArray();
|
||||
}
|
||||
|
||||
return new CompetingRiskResponseCombiner(events, times);
|
||||
return new CompetingRiskResponseCombiner(events);
|
||||
|
||||
}
|
||||
);
|
||||
|
@ -167,15 +160,8 @@ public class Settings {
|
|||
node.get("events").elements().forEachRemaining(event -> eventList.add(event.asInt()));
|
||||
final int[] events = eventList.stream().mapToInt(i -> i).toArray();
|
||||
|
||||
double[] times = null;
|
||||
// note that times may be null
|
||||
if(node.hasNonNull("times")){
|
||||
final List<Double> timeList = new ArrayList<>();
|
||||
node.get("times").elements().forEachRemaining(time -> timeList.add(time.asDouble()));
|
||||
times = timeList.stream().mapToDouble(db -> db).toArray();
|
||||
}
|
||||
|
||||
final CompetingRiskResponseCombiner responseCombiner = new CompetingRiskResponseCombiner(events, times);
|
||||
final CompetingRiskResponseCombiner responseCombiner = new CompetingRiskResponseCombiner(events);
|
||||
return new CompetingRiskListCombiner(responseCombiner);
|
||||
|
||||
}
|
||||
|
|
|
@ -16,84 +16,108 @@ import java.util.*;
|
|||
* See https://kogalur.github.io/randomForestSRC/theory.html for details.
|
||||
*
|
||||
*/
|
||||
@RequiredArgsConstructor
|
||||
public class CompetingRiskResponseCombiner implements ResponseCombiner<CompetingRiskResponse, CompetingRiskFunctions> {
|
||||
|
||||
private final int[] events;
|
||||
private final double[] times; // We may restrict ourselves to specific times.
|
||||
|
||||
public CompetingRiskResponseCombiner(final int[] events){
|
||||
this.events = events.clone();
|
||||
|
||||
// Check to make sure that events go from 1 to the right order
|
||||
for(int i=0; i<events.length; i++){
|
||||
if(events[i] != (i+1)){
|
||||
throw new IllegalArgumentException("The events parameter must be in the form 1,2,3,...J with no gaps");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public int[] getEvents(){
|
||||
return events.clone();
|
||||
}
|
||||
|
||||
public double[] getTimes(){
|
||||
return times.clone();
|
||||
}
|
||||
|
||||
@Override
|
||||
public CompetingRiskFunctions combine(List<CompetingRiskResponse> responses) {
|
||||
|
||||
final List<MathFunction> causeSpecificCumulativeHazardFunctionList = new ArrayList<>(events.length);
|
||||
final List<MathFunction> cumulativeIncidenceFunctionList = new ArrayList<>(events.length);
|
||||
|
||||
final double[] timesToUse;
|
||||
if(times != null){
|
||||
timesToUse = this.times;
|
||||
Collections.sort(responses, (y1, y2) -> {
|
||||
if(y1.getU() < y2.getU()){
|
||||
return -1;
|
||||
}
|
||||
else if(y1.getU() > y2.getU()){
|
||||
return 1;
|
||||
}
|
||||
else{
|
||||
timesToUse = responses.stream()
|
||||
.filter(response -> !response.isCensored())
|
||||
.mapToDouble(response -> response.getU())
|
||||
.sorted().distinct()
|
||||
.toArray();
|
||||
return 0;
|
||||
}
|
||||
});
|
||||
|
||||
final double[] individualsAtRiskArray = Arrays.stream(timesToUse).map(time -> riskSet(responses, time)).toArray();
|
||||
final int n = responses.size();
|
||||
|
||||
int[] numberOfCurrentEvents = new int[events.length+1];
|
||||
|
||||
// First we need to develop the overall survival curve!
|
||||
final List<Point> survivalPoints = new ArrayList<>(timesToUse.length);
|
||||
double previousSurvivalValue = 1.0;
|
||||
for(int i=0; i<timesToUse.length; i++){
|
||||
final double time_k = timesToUse[i];
|
||||
final double individualsAtRisk = individualsAtRiskArray[i]; // Y(t_k)
|
||||
final List<Point> survivalPoints = new ArrayList<>(n); // better to be too large than too small
|
||||
|
||||
if(individualsAtRisk == 0){
|
||||
// if we continue we'll get NaN
|
||||
break;
|
||||
// Also track riskSet variables and numberOfEvents, and timesToUse
|
||||
final List<Double> timesToUseList = new ArrayList<>(n);
|
||||
final List<Integer> riskSetList = new ArrayList<>(n);
|
||||
final List<int[]> numberOfEvents = new ArrayList<>(n);
|
||||
|
||||
|
||||
for(int i=0; i<n; i++){
|
||||
final CompetingRiskResponse currentResponse = responses.get(i);
|
||||
final boolean lastOfTime = (i+1)==n || responses.get(i+1).getU() > currentResponse.getU();
|
||||
|
||||
numberOfCurrentEvents[currentResponse.getDelta()]++;
|
||||
|
||||
if(lastOfTime){
|
||||
int totalNumberOfCurrentEvents = 0;
|
||||
for(int e = 1; e < numberOfCurrentEvents.length; e++){ // exclude censored events
|
||||
totalNumberOfCurrentEvents += numberOfCurrentEvents[e];
|
||||
}
|
||||
|
||||
final double numberOfEventsAtTime = (double) responses.stream()
|
||||
.filter(event -> !event.isCensored())
|
||||
.filter(event -> event.getU() == time_k) // since delta != 0 we know censoring didn't occur prior to this
|
||||
.count();
|
||||
|
||||
final double newValue = previousSurvivalValue * (1.0 - numberOfEventsAtTime / individualsAtRisk);
|
||||
survivalPoints.add(new Point(time_k, newValue));
|
||||
if(totalNumberOfCurrentEvents > 0){
|
||||
// Add point
|
||||
final double currentTime = currentResponse.getU();
|
||||
final int riskSet = n - (i+1) + totalNumberOfCurrentEvents + numberOfCurrentEvents[0];
|
||||
final double newValue = previousSurvivalValue * (1.0 - (double) totalNumberOfCurrentEvents / (double) riskSet);
|
||||
survivalPoints.add(new Point(currentTime, newValue));
|
||||
previousSurvivalValue = newValue;
|
||||
|
||||
timesToUseList.add(currentTime);
|
||||
riskSetList.add(riskSet);
|
||||
numberOfEvents.add(numberOfCurrentEvents);
|
||||
|
||||
}
|
||||
// reset counters
|
||||
numberOfCurrentEvents = new int[events.length+1];
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
final MathFunction survivalCurve = new MathFunction(survivalPoints, new Point(0.0, 1.0));
|
||||
|
||||
|
||||
for(final int event : events){
|
||||
|
||||
final List<Point> hazardFunctionPoints = new ArrayList<>(timesToUse.length);
|
||||
final List<Point> hazardFunctionPoints = new ArrayList<>(timesToUseList.size());
|
||||
Point previousHazardFunctionPoint = new Point(0.0, 0.0);
|
||||
|
||||
final List<Point> cifPoints = new ArrayList<>(timesToUse.length);
|
||||
final List<Point> cifPoints = new ArrayList<>(timesToUseList.size());
|
||||
Point previousCIFPoint = new Point(0.0, 0.0);
|
||||
|
||||
for(int i=0; i<timesToUse.length; i++){
|
||||
final double time_k = timesToUse[i];
|
||||
final double individualsAtRisk = individualsAtRiskArray[i]; // Y(t_k)
|
||||
for(int i=0; i<timesToUseList.size(); i++){
|
||||
final double time_k = timesToUseList.get(i);
|
||||
final double individualsAtRisk = riskSetList.get(i); // Y(t_k)
|
||||
|
||||
if(individualsAtRisk == 0){
|
||||
// if we continue we'll get NaN
|
||||
break;
|
||||
}
|
||||
|
||||
final double numberEventsAtTime = numberOfEventsAtTime(event, responses, time_k); // d_j(t_k)
|
||||
final double numberEventsAtTime = numberOfEvents.get(i)[event]; // d_j(t_k)
|
||||
|
||||
// Cause-specific cumulative hazard function
|
||||
final double hazardDeltaY = numberEventsAtTime / individualsAtRisk;
|
||||
|
@ -105,7 +129,7 @@ public class CompetingRiskResponseCombiner implements ResponseCombiner<Competing
|
|||
// Cumulative incidence function
|
||||
// TODO - confirm this behaviour
|
||||
//final double previousSurvivalEvaluation = i > 0 ? survivalCurve.evaluate(timesToUse[i-1]).getY() : survivalCurve.evaluate(0.0).getY();
|
||||
final double previousSurvivalEvaluation = i > 0 ? survivalCurve.evaluate(timesToUse[i-1]).getY() : 1.0;
|
||||
final double previousSurvivalEvaluation = i > 0 ? survivalCurve.evaluate(timesToUseList.get(i-1)).getY() : 1.0;
|
||||
|
||||
final double cifDeltaY = previousSurvivalEvaluation * (numberEventsAtTime / individualsAtRisk);
|
||||
final Point newCIFPoint = new Point(time_k, previousCIFPoint.getY() + cifDeltaY);
|
||||
|
@ -130,18 +154,5 @@ public class CompetingRiskResponseCombiner implements ResponseCombiner<Competing
|
|||
}
|
||||
|
||||
|
||||
private double riskSet(List<CompetingRiskResponse> eventList, double time) {
|
||||
return eventList.stream()
|
||||
.filter(event -> event.getU() >= time)
|
||||
.count();
|
||||
}
|
||||
|
||||
private double numberOfEventsAtTime(int eventOfFocus, List<CompetingRiskResponse> eventList, double time){
|
||||
return (double) eventList.stream()
|
||||
.filter(event -> event.getDelta() == eventOfFocus)
|
||||
.filter(event -> event.getU() == time) // since delta != 0 we know censoring didn't occur prior to this
|
||||
.count();
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -13,7 +13,7 @@ import java.util.List;
|
|||
|
||||
public class TestCompetingRiskResponseCombiner {
|
||||
|
||||
private CompetingRiskFunctions generateFunctions(double[] times){
|
||||
private CompetingRiskFunctions generateFunctions(){
|
||||
final List<CompetingRiskResponse> data = new ArrayList<>();
|
||||
|
||||
data.add(new CompetingRiskResponse(1, 1.0));
|
||||
|
@ -24,14 +24,14 @@ public class TestCompetingRiskResponseCombiner {
|
|||
data.add(new CompetingRiskResponse(0, 1.5));
|
||||
data.add(new CompetingRiskResponse(0, 2.5));
|
||||
|
||||
final CompetingRiskResponseCombiner combiner = new CompetingRiskResponseCombiner(new int[]{1,2}, times);
|
||||
final CompetingRiskResponseCombiner combiner = new CompetingRiskResponseCombiner(new int[]{1,2});
|
||||
|
||||
return combiner.combine(data);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCompetingRiskResponseCombiner(){
|
||||
final CompetingRiskFunctions functions = generateFunctions(null);
|
||||
final CompetingRiskFunctions functions = generateFunctions();
|
||||
|
||||
final MathFunction survivalCurve = functions.getSurvivalCurve();
|
||||
|
||||
|
@ -86,68 +86,5 @@ public class TestCompetingRiskResponseCombiner {
|
|||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCompetingRiskResponseCombinerWithSetTimes(){
|
||||
// By including time 3.0 (which extends past the data),
|
||||
// we verify that we don't get NaNs past 3.0, which was a previous bug.
|
||||
final CompetingRiskFunctions functions = generateFunctions(new double[]{1.0, 1.5, 2.0, 2.5, 3.0});
|
||||
|
||||
final MathFunction survivalCurve = functions.getSurvivalCurve();
|
||||
|
||||
// time = 1.0 1.5 2.0 2.5
|
||||
// surv = 0.7142857 0.5714286 0.1904762 0.1904762
|
||||
|
||||
final double margin = 0.0000001;
|
||||
|
||||
closeEnough(0.7142857, survivalCurve.evaluate(1.0).getY(), margin);
|
||||
closeEnough(0.5714286, survivalCurve.evaluate(1.5).getY(), margin);
|
||||
closeEnough(0.1904762, survivalCurve.evaluate(2.0).getY(), margin);
|
||||
closeEnough(0.1904762, survivalCurve.evaluate(2.5).getY(), margin);
|
||||
closeEnough(0.1904762, survivalCurve.evaluate(3.0).getY(), margin);
|
||||
|
||||
|
||||
// Time = 1.0 1.5 2.0 2.5
|
||||
/* Cumulative hazard function. Each row for one event.
|
||||
[,1] [,2] [,3] [,4]
|
||||
[1,] 0.2857143 0.2857143 0.6190476 0.6190476
|
||||
[2,] 0.0000000 0.2000000 0.5333333 0.5333333
|
||||
*/
|
||||
|
||||
final MathFunction cumHaz1 = functions.getCauseSpecificHazardFunction(1);
|
||||
closeEnough(0.2857143, cumHaz1.evaluate(1.0).getY(), margin);
|
||||
closeEnough(0.2857143, cumHaz1.evaluate(1.5).getY(), margin);
|
||||
closeEnough(0.6190476, cumHaz1.evaluate(2.0).getY(), margin);
|
||||
closeEnough(0.6190476, cumHaz1.evaluate(2.5).getY(), margin);
|
||||
closeEnough(0.6190476, cumHaz1.evaluate(3.0).getY(), margin);
|
||||
|
||||
final MathFunction cumHaz2 = functions.getCauseSpecificHazardFunction(2);
|
||||
closeEnough(0.0, cumHaz2.evaluate(1.0).getY(), margin);
|
||||
closeEnough(0.2, cumHaz2.evaluate(1.5).getY(), margin);
|
||||
closeEnough(0.5333333, cumHaz2.evaluate(2.0).getY(), margin);
|
||||
closeEnough(0.5333333, cumHaz2.evaluate(2.5).getY(), margin);
|
||||
closeEnough(0.5333333, cumHaz2.evaluate(3.0).getY(), margin);
|
||||
|
||||
/* Time = 1.0 1.5 2.0 2.5
|
||||
Cumulative Incidence Curve. Each row for one event.
|
||||
[,1] [,2] [,3] [,4]
|
||||
[1,] 0.2857143 0.2857143 0.4761905 0.4761905
|
||||
[2,] 0.0000000 0.1428571 0.3333333 0.3333333
|
||||
*/
|
||||
|
||||
final MathFunction cic1 = functions.getCumulativeIncidenceFunction(1);
|
||||
closeEnough(0.2857143, cic1.evaluate(1.0).getY(), margin);
|
||||
closeEnough(0.2857143, cic1.evaluate(1.5).getY(), margin);
|
||||
closeEnough(0.4761905, cic1.evaluate(2.0).getY(), margin);
|
||||
closeEnough(0.4761905, cic1.evaluate(2.5).getY(), margin);
|
||||
closeEnough(0.4761905, cic1.evaluate(3.0).getY(), margin);
|
||||
|
||||
final MathFunction cic2 = functions.getCumulativeIncidenceFunction(2);
|
||||
closeEnough(0.0, cic2.evaluate(1.0).getY(), margin);
|
||||
closeEnough(0.1428571, cic2.evaluate(1.5).getY(), margin);
|
||||
closeEnough(0.3333333, cic2.evaluate(2.0).getY(), margin);
|
||||
closeEnough(0.3333333, cic2.evaluate(2.5).getY(), margin);
|
||||
closeEnough(0.3333333, cic2.evaluate(3.0).getY(), margin);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue