Improve performance of CompetingRiskFunctionCombiner
Estimate of time improvement is at least 10x faster
This commit is contained in:
parent
c8269ae285
commit
bf168bc2a5
1 changed files with 44 additions and 20 deletions
|
@ -19,6 +19,7 @@ package ca.joeltherrien.randomforest.responses.competingrisk.combiner;
|
|||
import ca.joeltherrien.randomforest.responses.competingrisk.CompetingRiskFunctions;
|
||||
import ca.joeltherrien.randomforest.tree.ResponseCombiner;
|
||||
import ca.joeltherrien.randomforest.utils.RightContinuousStepFunction;
|
||||
import ca.joeltherrien.randomforest.utils.Utils;
|
||||
import lombok.RequiredArgsConstructor;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
@ -57,40 +58,63 @@ public class CompetingRiskFunctionCombiner implements ResponseCombiner<Competing
|
|||
final double n = responses.size();
|
||||
|
||||
final double[] survivalY = new double[timesToUse.length];
|
||||
final double[][] csCHFY = new double[events.length][timesToUse.length];
|
||||
final double[][] cifY = new double[events.length][timesToUse.length];
|
||||
|
||||
for(int i=0; i<timesToUse.length; i++){
|
||||
final double time = timesToUse[i];
|
||||
survivalY[i] = responses.stream()
|
||||
.mapToDouble(functions -> functions.getSurvivalCurve().evaluate(time) / n)
|
||||
.sum();
|
||||
}
|
||||
/*
|
||||
We're going to try to efficiently put our predictions together -
|
||||
Assumptions - for each event on a response, the hazard and CIF functions share the same x points
|
||||
|
||||
final RightContinuousStepFunction survivalFunction = new RightContinuousStepFunction(timesToUse, survivalY, 1.0);
|
||||
Plan - go through the time on each response and make use of that so that when we search for a time index
|
||||
to evaluate the function at, we don't need to re-search the earlier times.
|
||||
|
||||
final List<RightContinuousStepFunction> causeSpecificCumulativeHazardFunctionList = new ArrayList<>(events.length);
|
||||
final List<RightContinuousStepFunction> cumulativeIncidenceFunctionList = new ArrayList<>(events.length);
|
||||
*/
|
||||
|
||||
for(final int event : events){
|
||||
|
||||
final double[] cumulativeHazardFunctionY = new double[timesToUse.length];
|
||||
final double[] cumulativeIncidenceFunctionY = new double[timesToUse.length];
|
||||
for(final CompetingRiskFunctions currentFunctions : responses){
|
||||
final double[] survivalXPoints = currentFunctions.getSurvivalCurve().getX();
|
||||
final double[][] eventSpecificXPoints = new double[events.length][];
|
||||
|
||||
for(final int event : events){
|
||||
eventSpecificXPoints[event-1] = currentFunctions.getCumulativeIncidenceFunction(event)
|
||||
.getX();
|
||||
}
|
||||
|
||||
int previousSurvivalIndex = 0;
|
||||
final int[] previousEventSpecificIndex = new int[events.length]; // relying on 0 being default value
|
||||
|
||||
for(int i=0; i<timesToUse.length; i++){
|
||||
final double time = timesToUse[i];
|
||||
|
||||
cumulativeHazardFunctionY[i] = responses.stream()
|
||||
.mapToDouble(functions -> functions.getCauseSpecificHazardFunction(event).evaluate(time) / n)
|
||||
.sum();
|
||||
// Survival curve
|
||||
final int survivalTimeIndex = Utils.binarySearchLessThan(previousSurvivalIndex, survivalXPoints.length, survivalXPoints, time);
|
||||
survivalY[i] = survivalY[i] + currentFunctions.getSurvivalCurve().evaluateByIndex(survivalTimeIndex) / n;
|
||||
previousSurvivalIndex = Math.max(survivalTimeIndex, 0); // if our current time is less than the smallest time in xPoints then binarySearchLessThan returned a -1.
|
||||
// -1's not an issue for evaluateByIndex, but it is an issue for the next time binarySearchLessThan is called.
|
||||
|
||||
cumulativeIncidenceFunctionY[i] = responses.stream()
|
||||
.mapToDouble(functions -> functions.getCumulativeIncidenceFunction(event).evaluate(time) / n)
|
||||
.sum();
|
||||
// CHFs and CIFs
|
||||
for(final int event : events){
|
||||
final double[] xPoints = eventSpecificXPoints[event-1];
|
||||
final int eventTimeIndex = Utils.binarySearchLessThan(previousEventSpecificIndex[event-1], xPoints.length,
|
||||
xPoints, time);
|
||||
csCHFY[event-1][i] = csCHFY[event-1][i] + currentFunctions.getCauseSpecificHazardFunction(event)
|
||||
.evaluateByIndex(eventTimeIndex) / n;
|
||||
cifY[event-1][i] = cifY[event-1][i] + currentFunctions.getCumulativeIncidenceFunction(event)
|
||||
.evaluateByIndex(eventTimeIndex) / n;
|
||||
|
||||
previousEventSpecificIndex[event-1] = Math.max(eventTimeIndex, 0);
|
||||
}
|
||||
}
|
||||
|
||||
causeSpecificCumulativeHazardFunctionList.add(event-1, new RightContinuousStepFunction(timesToUse, cumulativeHazardFunctionY, 0));
|
||||
cumulativeIncidenceFunctionList.add(event-1, new RightContinuousStepFunction(timesToUse, cumulativeIncidenceFunctionY, 0));
|
||||
}
|
||||
|
||||
final RightContinuousStepFunction survivalFunction = new RightContinuousStepFunction(timesToUse, survivalY, 1.0);
|
||||
final List<RightContinuousStepFunction> causeSpecificCumulativeHazardFunctionList = new ArrayList<>(events.length);
|
||||
final List<RightContinuousStepFunction> cumulativeIncidenceFunctionList = new ArrayList<>(events.length);
|
||||
|
||||
for(final int event : events){
|
||||
causeSpecificCumulativeHazardFunctionList.add(event-1, new RightContinuousStepFunction(timesToUse, csCHFY[event-1], 0));
|
||||
cumulativeIncidenceFunctionList.add(event-1, new RightContinuousStepFunction(timesToUse, cifY[event-1], 0));
|
||||
}
|
||||
|
||||
return CompetingRiskFunctions.builder()
|
||||
|
|
Loading…
Reference in a new issue