Add convenience methods to improve R interface performance

This commit is contained in:
Joel Therrien 2018-09-10 12:31:35 -07:00
parent b8024275a9
commit e0681763ef
4 changed files with 52 additions and 5 deletions

View file

@ -5,6 +5,7 @@ import lombok.Builder;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.stream.Collectors;
@Builder
@ -16,17 +17,29 @@ public class Forest<O, FO> { // O = output of trees, FO = forest output. In prac
public FO evaluate(CovariateRow row){
return treeResponseCombiner.combine(
trees.parallelStream()
trees.stream()
.map(node -> node.evaluate(row))
.collect(Collectors.toList())
);
}
/**
* Used primarily in the R package interface to avoid R loops; and for easier parallelization.
*
* @param rowList List of CovariateRows to evaluate
* @return A List of predictions.
*/
public List<FO> evaluate(List<CovariateRow> rowList){
return rowList.parallelStream()
.map(this::evaluate)
.collect(Collectors.toList());
}
public FO evaluateOOB(CovariateRow row){
return treeResponseCombiner.combine(
trees.parallelStream()
trees.stream()
.filter(tree -> !tree.idInBootstrapSample(row.getId()))
.map(node -> node.evaluate(row))
.collect(Collectors.toList())

View file

@ -0,0 +1,34 @@
package ca.joeltherrien.randomforest.utils;
import java.util.List;
/**
* These static methods are designed to make the R interface more performant; and to avoid using R loops.
*
*/
public final class RUtils {
public static double[] extractTimes(final MathFunction function){
final List<Point> pointList = function.getPoints();
final double[] times = new double[pointList.size()];
for(int i=0; i<pointList.size(); i++){
times[i] = pointList.get(i).getTime();
}
return times;
}
public static double[] extractY(final MathFunction function){
final List<Point> pointList = function.getPoints();
final double[] times = new double[pointList.size()];
for(int i=0; i<pointList.size(); i++){
times[i] = pointList.get(i).getY();
}
return times;
}
}

View file

@ -3,7 +3,7 @@ package ca.joeltherrien.randomforest.utils;
import java.util.*;
import java.util.concurrent.ThreadLocalRandom;
public class Utils {
public final class Utils {
public static MathFunction estimateOneMinusECDF(final double[] times){
final Point defaultPoint = new Point(0.0, 1.0);

View file

@ -325,8 +325,8 @@ public class TestCompetingRisk {
*/
// Consistency results
closeEnough(0.395, errorRates[0], 0.01);
closeEnough(0.345, errorRates[1], 0.01);
closeEnough(0.395, errorRates[0], 0.02);
closeEnough(0.345, errorRates[1], 0.02);
System.out.println(errorRateCalculator.calculateNaiveMortalityError(new int[]{1,2}));