Add support for offline forests.

This commit is contained in:
Joel Therrien 2019-11-13 17:08:31 -08:00
parent 54af805d4d
commit f3a4ef01ed
10 changed files with 296 additions and 125 deletions

View file

@ -28,6 +28,7 @@ import ca.joeltherrien.randomforest.responses.competingrisk.splitfinder.GrayLogR
import ca.joeltherrien.randomforest.responses.competingrisk.splitfinder.LogRankSplitFinder;
import ca.joeltherrien.randomforest.responses.regression.MeanResponseCombiner;
import ca.joeltherrien.randomforest.responses.regression.WeightedVarianceSplitFinder;
import ca.joeltherrien.randomforest.tree.ForestResponseCombiner;
import ca.joeltherrien.randomforest.tree.ResponseCombiner;
import ca.joeltherrien.randomforest.tree.SplitFinder;
import ca.joeltherrien.randomforest.utils.JsonUtils;
@ -110,6 +111,8 @@ public class Settings {
private static Map<String, Function<ObjectNode, ResponseCombiner>> RESPONSE_COMBINER_MAP = new HashMap<>();
private static Map<String, Function<ObjectNode, ForestResponseCombiner>> FOREST_RESPONSE_COMBINER_MAP = new HashMap<>();
public static Function<ObjectNode, ResponseCombiner> getResponseCombinerConstructor(final String name){
return RESPONSE_COMBINER_MAP.get(name.toLowerCase());
}
@ -117,11 +120,21 @@ public class Settings {
RESPONSE_COMBINER_MAP.put(name.toLowerCase(), responseCombinerConstructor);
}
public static Function<ObjectNode, ForestResponseCombiner> getForestResponseCombinerConstructor(final String name){
return FOREST_RESPONSE_COMBINER_MAP.get(name.toLowerCase());
}
public static void registerForestResponseCombinerConstructor(final String name, final Function<ObjectNode, ForestResponseCombiner> responseCombinerConstructor){
FOREST_RESPONSE_COMBINER_MAP.put(name.toLowerCase(), responseCombinerConstructor);
}
static{
registerResponseCombinerConstructor("MeanResponseCombiner",
(node) -> new MeanResponseCombiner()
);
registerForestResponseCombinerConstructor("MeanResponseCombiner",
(node) -> new MeanResponseCombiner()
);
registerResponseCombinerConstructor("CompetingRiskResponseCombiner",
(node) -> {
final int[] events = JsonUtils.jsonToIntArray(node.get("events"));
@ -131,7 +144,7 @@ public class Settings {
}
);
registerResponseCombinerConstructor("CompetingRiskFunctionCombiner",
registerForestResponseCombinerConstructor("CompetingRiskFunctionCombiner",
(node) -> {
final int[] events = JsonUtils.jsonToIntArray(node.get("events"));
@ -144,8 +157,6 @@ public class Settings {
}
);
}
private int numberOfSplits = 5;
@ -217,10 +228,10 @@ public class Settings {
}
@JsonIgnore
public ResponseCombiner getTreeCombiner(){
public ForestResponseCombiner getTreeCombiner(){
final String type = treeCombinerSettings.get("type").asText();
return getResponseCombinerConstructor(type).apply(treeCombinerSettings);
return getForestResponseCombinerConstructor(type).apply(treeCombinerSettings);
}
@JsonIgnore

View file

@ -17,17 +17,15 @@
package ca.joeltherrien.randomforest.responses.competingrisk.combiner;
import ca.joeltherrien.randomforest.responses.competingrisk.CompetingRiskFunctions;
import ca.joeltherrien.randomforest.tree.ResponseCombiner;
import ca.joeltherrien.randomforest.utils.RightContinuousStepFunction;
import ca.joeltherrien.randomforest.utils.Utils;
import ca.joeltherrien.randomforest.tree.ForestResponseCombiner;
import ca.joeltherrien.randomforest.tree.IntermediateCombinedResponse;
import lombok.RequiredArgsConstructor;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
@RequiredArgsConstructor
public class CompetingRiskFunctionCombiner implements ResponseCombiner<CompetingRiskFunctions, CompetingRiskFunctions> {
public class CompetingRiskFunctionCombiner implements ForestResponseCombiner<CompetingRiskFunctions, CompetingRiskFunctions> {
private static final long serialVersionUID = 1L;
@ -57,72 +55,22 @@ public class CompetingRiskFunctionCombiner implements ResponseCombiner<Competing
).sorted().distinct().toArray();
}
final double n = responses.size();
final double[] survivalY = new double[timesToUse.length];
final double[][] csCHFY = new double[events.length][timesToUse.length];
final double[][] cifY = new double[events.length][timesToUse.length];
/*
We're going to try to efficiently put our predictions together -
Assumptions - for each event on a response, the hazard and CIF functions share the same x points
Plan - go through the time on each response and make use of that so that when we search for a time index
to evaluate the function at, we don't need to re-search the earlier times.
*/
for(final CompetingRiskFunctions currentFunctions : responses){
final double[] survivalXPoints = currentFunctions.getSurvivalCurve().getX();
final double[][] eventSpecificXPoints = new double[events.length][];
for(final int event : events){
eventSpecificXPoints[event-1] = currentFunctions.getCumulativeIncidenceFunction(event)
.getX();
}
int previousSurvivalIndex = 0;
final int[] previousEventSpecificIndex = new int[events.length]; // relying on 0 being default value
for(int i=0; i<timesToUse.length; i++){
final double time = timesToUse[i];
// Survival curve
final int survivalTimeIndex = Utils.binarySearchLessThan(previousSurvivalIndex, survivalXPoints.length, survivalXPoints, time);
survivalY[i] = survivalY[i] + currentFunctions.getSurvivalCurve().evaluateByIndex(survivalTimeIndex) / n;
previousSurvivalIndex = Math.max(survivalTimeIndex, 0); // if our current time is less than the smallest time in xPoints then binarySearchLessThan returned a -1.
// -1's not an issue for evaluateByIndex, but it is an issue for the next time binarySearchLessThan is called.
// CHFs and CIFs
for(final int event : events){
final double[] xPoints = eventSpecificXPoints[event-1];
final int eventTimeIndex = Utils.binarySearchLessThan(previousEventSpecificIndex[event-1], xPoints.length,
xPoints, time);
csCHFY[event-1][i] = csCHFY[event-1][i] + currentFunctions.getCauseSpecificHazardFunction(event)
.evaluateByIndex(eventTimeIndex) / n;
cifY[event-1][i] = cifY[event-1][i] + currentFunctions.getCumulativeIncidenceFunction(event)
.evaluateByIndex(eventTimeIndex) / n;
previousEventSpecificIndex[event-1] = Math.max(eventTimeIndex, 0);
}
}
final IntermediateCompetingRisksFunctionsTimesKnown intermediateResult = new IntermediateCompetingRisksFunctionsTimesKnown(responses.size(), this.events, timesToUse);
for(CompetingRiskFunctions input : responses){
intermediateResult.processNewInput(input);
}
final RightContinuousStepFunction survivalFunction = new RightContinuousStepFunction(timesToUse, survivalY, 1.0);
final List<RightContinuousStepFunction> causeSpecificCumulativeHazardFunctionList = new ArrayList<>(events.length);
final List<RightContinuousStepFunction> cumulativeIncidenceFunctionList = new ArrayList<>(events.length);
return intermediateResult.transformToOutput();
}
for(final int event : events){
causeSpecificCumulativeHazardFunctionList.add(event-1, new RightContinuousStepFunction(timesToUse, csCHFY[event-1], 0));
cumulativeIncidenceFunctionList.add(event-1, new RightContinuousStepFunction(timesToUse, cifY[event-1], 0));
@Override
public IntermediateCombinedResponse<CompetingRiskFunctions, CompetingRiskFunctions> startIntermediateCombinedResponse(int countInputs) {
if(this.times != null){
return new IntermediateCompetingRisksFunctionsTimesKnown(countInputs, this.events, this.times);
}
return CompetingRiskFunctions.builder()
.causeSpecificHazards(causeSpecificCumulativeHazardFunctionList)
.cumulativeIncidenceCurves(cumulativeIncidenceFunctionList)
.survivalCurve(survivalFunction)
.build();
// TODO - implement
throw new RuntimeException("startIntermediateCombinedResponse when times is unknown is not yet implemented");
}
}

View file

@ -0,0 +1,118 @@
package ca.joeltherrien.randomforest.responses.competingrisk.combiner;
import ca.joeltherrien.randomforest.responses.competingrisk.CompetingRiskFunctions;
import ca.joeltherrien.randomforest.tree.IntermediateCombinedResponse;
import ca.joeltherrien.randomforest.utils.RightContinuousStepFunction;
import ca.joeltherrien.randomforest.utils.Utils;
import java.util.ArrayList;
import java.util.List;
public class IntermediateCompetingRisksFunctionsTimesKnown implements IntermediateCombinedResponse<CompetingRiskFunctions, CompetingRiskFunctions> {
private double expectedN;
private final int[] events;
private final double[] timesToUse;
private int actualN;
private final double[] survivalY;
private final double[][] csCHFY;
private final double[][] cifY;
public IntermediateCompetingRisksFunctionsTimesKnown(int n, int[] events, double[] timesToUse){
this.expectedN = n;
this.events = events;
this.timesToUse = timesToUse;
this.actualN = 0;
this.survivalY = new double[timesToUse.length];
this.csCHFY = new double[events.length][timesToUse.length];
this.cifY = new double[events.length][timesToUse.length];
}
@Override
public void processNewInput(CompetingRiskFunctions input) {
/*
We're going to try to efficiently put our predictions together -
Assumptions - for each event on a response, the hazard and CIF functions share the same x points
Plan - go through the time on each response and make use of that so that when we search for a time index
to evaluate the function at, we don't need to re-search the earlier times.
*/
this.actualN++;
final double[] survivalXPoints = input.getSurvivalCurve().getX();
final double[][] eventSpecificXPoints = new double[events.length][];
for(final int event : events){
eventSpecificXPoints[event-1] = input.getCumulativeIncidenceFunction(event)
.getX();
}
int previousSurvivalIndex = 0;
final int[] previousEventSpecificIndex = new int[events.length]; // relying on 0 being default value
for(int i=0; i<timesToUse.length; i++){
final double time = timesToUse[i];
// Survival curve
final int survivalTimeIndex = Utils.binarySearchLessThan(previousSurvivalIndex, survivalXPoints.length, survivalXPoints, time);
survivalY[i] = survivalY[i] + input.getSurvivalCurve().evaluateByIndex(survivalTimeIndex) / expectedN;
previousSurvivalIndex = Math.max(survivalTimeIndex, 0); // if our current time is less than the smallest time in xPoints then binarySearchLessThan returned a -1.
// -1's not an issue for evaluateByIndex, but it is an issue for the next time binarySearchLessThan is called.
// CHFs and CIFs
for(final int event : events){
final double[] xPoints = eventSpecificXPoints[event-1];
final int eventTimeIndex = Utils.binarySearchLessThan(previousEventSpecificIndex[event-1], xPoints.length,
xPoints, time);
csCHFY[event-1][i] = csCHFY[event-1][i] + input.getCauseSpecificHazardFunction(event)
.evaluateByIndex(eventTimeIndex) / expectedN;
cifY[event-1][i] = cifY[event-1][i] + input.getCumulativeIncidenceFunction(event)
.evaluateByIndex(eventTimeIndex) / expectedN;
previousEventSpecificIndex[event-1] = Math.max(eventTimeIndex, 0);
}
}
}
@Override
public CompetingRiskFunctions transformToOutput() {
rescaleOutput();
final RightContinuousStepFunction survivalFunction = new RightContinuousStepFunction(timesToUse, survivalY, 1.0);
final List<RightContinuousStepFunction> causeSpecificCumulativeHazardFunctionList = new ArrayList<>(events.length);
final List<RightContinuousStepFunction> cumulativeIncidenceFunctionList = new ArrayList<>(events.length);
for(final int event : events){
causeSpecificCumulativeHazardFunctionList.add(event-1, new RightContinuousStepFunction(timesToUse, csCHFY[event-1], 0));
cumulativeIncidenceFunctionList.add(event-1, new RightContinuousStepFunction(timesToUse, cifY[event-1], 0));
}
return CompetingRiskFunctions.builder()
.causeSpecificHazards(causeSpecificCumulativeHazardFunctionList)
.cumulativeIncidenceCurves(cumulativeIncidenceFunctionList)
.survivalCurve(survivalFunction)
.build();
}
private void rescaleOutput() {
rescaleArray(actualN, this.survivalY);
for(int event : events){
rescaleArray(actualN, this.cifY[event - 1]);
rescaleArray(actualN, this.csCHFY[event - 1]);
}
this.expectedN = actualN;
}
private void rescaleArray(double newN, double[] array){
for(int i=0; i<array.length; i++){
array[i] = array[i] * (this.expectedN / newN);
}
}
}

View file

@ -16,7 +16,8 @@
package ca.joeltherrien.randomforest.responses.regression;
import ca.joeltherrien.randomforest.tree.ResponseCombiner;
import ca.joeltherrien.randomforest.tree.ForestResponseCombiner;
import ca.joeltherrien.randomforest.tree.IntermediateCombinedResponse;
import java.util.List;
@ -24,7 +25,7 @@ import java.util.List;
* Returns the Mean value of a group of Doubles.
*
*/
public class MeanResponseCombiner implements ResponseCombiner<Double, Double> {
public class MeanResponseCombiner implements ForestResponseCombiner<Double, Double> {
private static final long serialVersionUID = 1L;
@Override
@ -35,5 +36,39 @@ public class MeanResponseCombiner implements ResponseCombiner<Double, Double> {
}
@Override
public IntermediateCombinedResponse<Double, Double> startIntermediateCombinedResponse(int countInputs) {
return new MeanIntermediateCombinedResponse(countInputs);
}
public static class MeanIntermediateCombinedResponse implements IntermediateCombinedResponse<Double, Double>{
private double expectedN;
private int actualN;
private double currentMean;
public MeanIntermediateCombinedResponse(int n){
this.expectedN = n;
this.actualN = 0;
this.currentMean = 0.0;
}
@Override
public void processNewInput(Double input) {
this.currentMean = this.currentMean + input / expectedN;
this.actualN ++;
}
@Override
public Double transformToOutput() {
// rescale if necessary
this.currentMean = this.currentMean * (this.expectedN / (double) actualN);
this.expectedN = actualN;
return currentMean;
}
}
}

View file

@ -0,0 +1,23 @@
/*
* Copyright (c) 2019 Joel Therrien.
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package ca.joeltherrien.randomforest.tree;
public interface ForestResponseCombiner<I, O> extends ResponseCombiner<I, O>{
IntermediateCombinedResponse<I, O> startIntermediateCombinedResponse(int countInputs);
}

View file

@ -38,7 +38,7 @@ public class ForestTrainer<Y, TO, FO> {
private final TreeTrainer<Y, TO> treeTrainer;
private final List<Covariate> covariates;
private final ResponseCombiner<TO, FO> treeResponseCombiner;
private final ForestResponseCombiner<TO, FO> treeResponseCombiner;
private final List<Row<Y>> data;
// number of trees to try

View file

@ -0,0 +1,30 @@
/*
* Copyright (c) 2019 Joel Therrien.
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package ca.joeltherrien.randomforest.tree;
/**
* Similar to ResponseCombiner, but an IntermediateCombinedResponse represents the intermediate state of a single output in the process of being combined.
* This class is only used in OfflineForests where we can only load one Tree in memory at a time.
*
*/
public interface IntermediateCombinedResponse<I, O> {
void processNewInput(I input);
O transformToOutput();
}

View file

@ -22,7 +22,6 @@ import lombok.AllArgsConstructor;
import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.stream.Collectors;
@ -32,9 +31,9 @@ import java.util.stream.IntStream;
public class OfflineForest<O, FO> extends Forest<O, FO> {
private final File[] treeFiles;
private final ResponseCombiner<O, FO> treeResponseCombiner;
private final ForestResponseCombiner<O, FO> treeResponseCombiner;
public OfflineForest(File treeDirectoryPath, ResponseCombiner<O, FO> treeResponseCombiner){
public OfflineForest(File treeDirectoryPath, ForestResponseCombiner<O, FO> treeResponseCombiner){
this.treeResponseCombiner = treeResponseCombiner;
if(!treeDirectoryPath.isDirectory()){
@ -42,7 +41,6 @@ public class OfflineForest<O, FO> extends Forest<O, FO> {
}
this.treeFiles = treeDirectoryPath.listFiles((file, s) -> s.endsWith(".tree"));
}
@Override
@ -72,116 +70,108 @@ public class OfflineForest<O, FO> extends Forest<O, FO> {
@Override
public List<FO> evaluate(List<? extends CovariateRow> rowList){
final O[][] predictions = (O[][])new Object[rowList.size()][treeFiles.length];
final Iterator<Tree<O>> treeIterator = getTrees().iterator();
final List<IntermediateCombinedResponse<O, FO>> intermediatePredictions =
IntStream.range(0, rowList.size())
.mapToObj(i -> treeResponseCombiner.startIntermediateCombinedResponse(treeFiles.length))
.collect(Collectors.toList());
final Iterator<Tree<O>> treeIterator = getTrees().iterator();
for(int treeId = 0; treeId < treeFiles.length; treeId++){
final Tree<O> currentTree = treeIterator.next();
final int tempTreeId = treeId; // Java workaround
IntStream.range(0, rowList.size()).parallel().forEach(
rowId -> {
final CovariateRow row = rowList.get(rowId);
final O prediction = currentTree.evaluate(row);
predictions[rowId][tempTreeId] = prediction;
intermediatePredictions.get(rowId).processNewInput(prediction);
}
);
}
return Arrays.stream(predictions).parallel()
.map(predArray -> treeResponseCombiner.combine(Arrays.asList(predArray)))
return intermediatePredictions.stream().parallel()
.map(intPred -> intPred.transformToOutput())
.collect(Collectors.toList());
}
@Override
public List<FO> evaluateSerial(List<? extends CovariateRow> rowList){
final O[][] predictions = (O[][])new Object[rowList.size()][treeFiles.length];
final Iterator<Tree<O>> treeIterator = getTrees().iterator();
final List<IntermediateCombinedResponse<O, FO>> intermediatePredictions =
IntStream.range(0, rowList.size())
.mapToObj(i -> treeResponseCombiner.startIntermediateCombinedResponse(treeFiles.length))
.collect(Collectors.toList());
final Iterator<Tree<O>> treeIterator = getTrees().iterator();
for(int treeId = 0; treeId < treeFiles.length; treeId++){
final Tree<O> currentTree = treeIterator.next();
final int tempTreeId = treeId; // Java workaround
IntStream.range(0, rowList.size()).sequential().forEach(
rowId -> {
final CovariateRow row = rowList.get(rowId);
final O prediction = currentTree.evaluate(row);
predictions[rowId][tempTreeId] = prediction;
intermediatePredictions.get(rowId).processNewInput(prediction);
}
);
}
return Arrays.stream(predictions).sequential()
.map(predArray -> treeResponseCombiner.combine(Arrays.asList(predArray)))
return intermediatePredictions.stream().sequential()
.map(intPred -> intPred.transformToOutput())
.collect(Collectors.toList());
}
@Override
public List<FO> evaluateOOB(List<? extends CovariateRow> rowList){
final O[][] predictions = (O[][])new Object[rowList.size()][treeFiles.length];
final Iterator<Tree<O>> treeIterator = getTrees().iterator();
final List<IntermediateCombinedResponse<O, FO>> intermediatePredictions =
IntStream.range(0, rowList.size())
.mapToObj(i -> treeResponseCombiner.startIntermediateCombinedResponse(treeFiles.length))
.collect(Collectors.toList());
final Iterator<Tree<O>> treeIterator = getTrees().iterator();
for(int treeId = 0; treeId < treeFiles.length; treeId++){
final Tree<O> currentTree = treeIterator.next();
final int tempTreeId = treeId; // Java workaround
IntStream.range(0, rowList.size()).parallel().forEach(
rowId -> {
final CovariateRow row = rowList.get(rowId);
if(!currentTree.idInBootstrapSample(row.getId())){
final O prediction = currentTree.evaluate(row);
predictions[rowId][tempTreeId] = prediction;
} else{
predictions[rowId][tempTreeId] = null;
intermediatePredictions.get(rowId).processNewInput(prediction);
}
// else do nothing; when we get the final output it will get scaled for the smaller N
}
);
}
return Arrays.stream(predictions).parallel()
.map(predArray -> {
final List<O> predList = Arrays.stream(predArray).parallel()
.filter(pred -> pred != null).collect(Collectors.toList());
return treeResponseCombiner.combine(predList);
})
return intermediatePredictions.stream().parallel()
.map(intPred -> intPred.transformToOutput())
.collect(Collectors.toList());
}
@Override
public List<FO> evaluateSerialOOB(List<? extends CovariateRow> rowList){
final O[][] predictions = (O[][])new Object[rowList.size()][treeFiles.length];
final Iterator<Tree<O>> treeIterator = getTrees().iterator();
final List<IntermediateCombinedResponse<O, FO>> intermediatePredictions =
IntStream.range(0, rowList.size())
.mapToObj(i -> treeResponseCombiner.startIntermediateCombinedResponse(treeFiles.length))
.collect(Collectors.toList());
final Iterator<Tree<O>> treeIterator = getTrees().iterator();
for(int treeId = 0; treeId < treeFiles.length; treeId++){
final Tree<O> currentTree = treeIterator.next();
final int tempTreeId = treeId; // Java workaround
IntStream.range(0, rowList.size()).sequential().forEach(
rowId -> {
final CovariateRow row = rowList.get(rowId);
if(!currentTree.idInBootstrapSample(row.getId())){
final O prediction = currentTree.evaluate(row);
predictions[rowId][tempTreeId] = prediction;
} else{
predictions[rowId][tempTreeId] = null;
intermediatePredictions.get(rowId).processNewInput(prediction);
}
// else do nothing; when we get the final output it will get scaled for the smaller N
}
);
}
return Arrays.stream(predictions).sequential()
.map(predArray -> {
final List<O> predList = Arrays.stream(predArray).sequential()
.filter(pred -> pred != null).collect(Collectors.toList());
return treeResponseCombiner.combine(predList);
})
return intermediatePredictions.stream().sequential()
.map(intPred -> intPred.transformToOutput())
.collect(Collectors.toList());
}
@ -194,5 +184,15 @@ public class OfflineForest<O, FO> extends Forest<O, FO> {
public int getNumberOfTrees() {
return treeFiles.length;
}
public OnlineForest<O, FO> createOnlineCopy(){
final List<Tree<O>> allTrees = new ArrayList<>(getNumberOfTrees());
getTrees().forEach(allTrees::add);
return OnlineForest.<O, FO>builder()
.trees(allTrees)
.treeResponseCombiner(treeResponseCombiner)
.build();
}
}

View file

@ -31,6 +31,11 @@ public class DataUtils {
}
final File[] treeFiles = folder.listFiles((file, s) -> s.endsWith(".tree"));
return loadOnlineForest(treeFiles, treeResponseCombiner);
}
public static <O, FO> OnlineForest<O, FO> loadOnlineForest(File[] treeFiles, ResponseCombiner<O, FO> treeResponseCombiner) throws IOException, ClassNotFoundException {
final List<File> treeFileList = Arrays.asList(treeFiles);
Collections.sort(treeFileList, Comparator.comparing(File::getName));

View file

@ -25,7 +25,6 @@ import ca.joeltherrien.randomforest.responses.competingrisk.CompetingRiskRespons
import java.io.*;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;
import java.util.zip.GZIPInputStream;
import java.util.zip.GZIPOutputStream;
@ -200,11 +199,13 @@ public final class RUtils {
}
public static File[] getTreeFileArray(String folderPath, int endingId){
return (File[]) IntStream.rangeClosed(1, endingId).sequential()
.mapToObj(i -> folderPath + "/tree-" + i + ".tree")
.map(File::new)
.toArray();
final File[] fileArray = new File[endingId];
for(int i = 1; i <= endingId; i++){
fileArray[i-1] = new File(folderPath + "/tree-" + i + ".tree");
}
return fileArray;
}
}