Introduce Support for Factors #7

Merged
joel merged 7 commits from 01-factors into master 2018-07-04 20:27:42 +00:00
6 changed files with 270 additions and 2 deletions
Showing only changes of commit 3b8952e13c - Show all commits

13
pom.xml
View file

@ -24,6 +24,19 @@
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>5.2.0</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId>
<version>5.2.0</version>
<scope>test</scope>
</dependency>
</dependencies>

View file

@ -26,7 +26,7 @@ public final class FactorCovariate implements Covariate<String>{
for(int i=0; i<levels.size()-1; i++){
numberOfPossiblePairingsTemp *= 2;
}
this.numberOfPossiblePairings = numberOfPossiblePairingsTemp;
this.numberOfPossiblePairings = numberOfPossiblePairingsTemp-1;
}
@ -37,7 +37,7 @@ public final class FactorCovariate implements Covariate<String>{
}
@Override
public Collection<FactorSplitRule> generateSplitRules(List<Value<String>> data, int number) {
public Set<FactorSplitRule> generateSplitRules(List<Value<String>> data, int number) {
final Set<FactorSplitRule> splitRules = new HashSet<>();
// This is to ensure we don't get stuck in an infinite loop for small factors

View file

@ -0,0 +1,65 @@
package ca.joeltherrien.randomforest.covariates;
import ca.joeltherrien.randomforest.FactorCovariate;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.function.Executable;
import java.util.Collection;
import java.util.List;
import static org.junit.jupiter.api.Assertions.*;
public class FactorCovariateTest {
@Test
void verifyEqualLevels() {
final FactorCovariate petCovariate = createTestCovariate();
final FactorCovariate.FactorValue dog1 = petCovariate.createValue("DOG");
final FactorCovariate.FactorValue dog2 = petCovariate.createValue("DO" + "G");
assertSame(dog1, dog2);
final FactorCovariate.FactorValue cat1 = petCovariate.createValue("CAT");
final FactorCovariate.FactorValue cat2 = petCovariate.createValue("CA" + "T");
assertSame(cat1, cat2);
final FactorCovariate.FactorValue mouse1 = petCovariate.createValue("MOUSE");
final FactorCovariate.FactorValue mouse2 = petCovariate.createValue("MOUS" + "E");
assertSame(mouse1, mouse2);
}
@Test
void verifyBadLevelException(){
final FactorCovariate petCovariate = createTestCovariate();
final Executable badCode = () -> petCovariate.createValue("vulcan");
assertThrows(IllegalArgumentException.class, badCode, "vulcan is not a level in FactorCovariate pet");
}
@Test
void testAllSubsets(){
final FactorCovariate petCovariate = createTestCovariate();
final Collection<FactorCovariate.FactorSplitRule> splitRules = petCovariate.generateSplitRules(null, 100);
assertEquals(splitRules.size(), 3);
// TODO verify the contents of the split rules
}
private FactorCovariate createTestCovariate(){
final List<String> levels = List.of("DOG", "CAT", "MOUSE");
return new FactorCovariate("pet", levels);
}
}

View file

@ -0,0 +1,190 @@
package ca.joeltherrien.randomforest.workshop;
import ca.joeltherrien.randomforest.*;
import ca.joeltherrien.randomforest.regression.MeanResponseCombiner;
import ca.joeltherrien.randomforest.regression.WeightedVarianceGroupDifferentiator;
import ca.joeltherrien.randomforest.tree.Node;
import ca.joeltherrien.randomforest.tree.TreeTrainer;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.stream.Collectors;
import java.util.stream.DoubleStream;
import java.util.stream.Stream;
public class TrainSingleTreeFactor {
public static void main(String[] args) {
System.out.println("Hello world!");
final Random random = new Random(123);
final int n = 10000;
final List<Row<Double>> trainingSet = new ArrayList<>(n);
final Covariate<Double> x1Covariate = new NumericCovariate("x1");
final Covariate<Double> x2Covariate = new NumericCovariate("x2");
final FactorCovariate x3Covariate = new FactorCovariate("x3", List.of("cat", "dog", "mouse"));
final List<Covariate.Value<Double>> x1List = DoubleStream
.generate(() -> random.nextDouble()*10.0)
.limit(n)
.mapToObj(x1 -> x1Covariate.createValue(x1))
.collect(Collectors.toList());
final List<Covariate.Value<Double>> x2List = DoubleStream
.generate(() -> random.nextDouble()*10.0)
.limit(n)
.mapToObj(x2 -> x1Covariate.createValue(x2))
.collect(Collectors.toList());
final List<Covariate.Value<String>> x3List = DoubleStream
.generate(() -> random.nextDouble())
.limit(n)
.mapToObj(db -> {
if(db < 0.333){
return "cat";
}
else if(db < 0.5){
return "mouse";
}
else{
return "dog";
}
})
.map(str -> x3Covariate.createValue(str))
.collect(Collectors.toList());
for(int i=0; i<n; i++){
final Covariate.Value<Double> x1 = x1List.get(i);
final Covariate.Value<Double> x2 = x2List.get(i);
final Covariate.Value<String> x3 = x3List.get(i);
trainingSet.add(generateRow(x1, x2, x3, i));
}
final TreeTrainer<Double> treeTrainer = TreeTrainer.<Double>builder()
.groupDifferentiator(new WeightedVarianceGroupDifferentiator())
.responseCombiner(new MeanResponseCombiner())
.maxNodeDepth(30)
.nodeSize(5)
.numberOfSplits(5)
.build();
final List<Covariate> covariateNames = List.of(x1Covariate, x2Covariate);
final long startTime = System.currentTimeMillis();
final Node<Double> baseNode = treeTrainer.growTree(trainingSet, covariateNames);
final long endTime = System.currentTimeMillis();
System.out.println(((double)(endTime - startTime))/1000.0);
final Covariate.Value<String> cat = x3Covariate.createValue("cat");
final Covariate.Value<String> dog = x3Covariate.createValue("dog");
final Covariate.Value<String> mouse = x3Covariate.createValue("mouse");
final List<CovariateRow> testSet = new ArrayList<>();
testSet.add(generateCovariateRow(x1Covariate.createValue(9.0), x2Covariate.createValue(2.0), cat, 1)); // expect 1
testSet.add(generateCovariateRow(x1Covariate.createValue(5.0), x2Covariate.createValue(2.0), dog, 5));
testSet.add(generateCovariateRow(x1Covariate.createValue(2.0), x2Covariate.createValue(2.0), cat, 3));
testSet.add(generateCovariateRow(x1Covariate.createValue(9.0), x2Covariate.createValue(5.0), dog, 0));
testSet.add(generateCovariateRow(x1Covariate.createValue(6.0), x2Covariate.createValue(5.0), cat, 8));
testSet.add(generateCovariateRow(x1Covariate.createValue(3.0), x2Covariate.createValue(5.0), dog, 10));
testSet.add(generateCovariateRow(x1Covariate.createValue(1.0), x2Covariate.createValue(5.0), cat, 3));
testSet.add(generateCovariateRow(x1Covariate.createValue(7.0), x2Covariate.createValue(9.0), dog, 2));
testSet.add(generateCovariateRow(x1Covariate.createValue(1.0), x2Covariate.createValue(9.0), cat, 4));
testSet.add(generateCovariateRow(x1Covariate.createValue(3.0), x2Covariate.createValue(9.0), mouse, 0));
testSet.add(generateCovariateRow(x1Covariate.createValue(7.0), x2Covariate.createValue(9.0), mouse, 5));
for(final CovariateRow testCase : testSet){
System.out.println(testCase);
System.out.println(baseNode.evaluate(testCase));
System.out.println();
}
}
public static Row<Double> generateRow(Covariate.Value<Double> x1, Covariate.Value<Double> x2, Covariate.Value<String> x3, int id){
double y = generateResponse(x1.getValue(), x2.getValue(), x3.getValue());
final Map<String, Covariate.Value> map = Map.of("x1", x1, "x2", x2);
return new Row<>(map, id, y);
}
public static CovariateRow generateCovariateRow(Covariate.Value x1, Covariate.Value x2, Covariate.Value x3, int id){
final Map<String, Covariate.Value> map = Map.of("x1", x1, "x2", x2, "x3", x3);
return new CovariateRow(map, id);
}
public static double generateResponse(double x1, double x2, String x3){
if(x3.equalsIgnoreCase("mouse")){
if(x1 <= 5){
return 0;
}
else{
return 5;
}
}
// cat & dog below
if(x2 <= 3){
if(x1 <= 3){
return 3;
}
else if(x1 <= 7){
return 5;
}
else{
return 1;
}
}
else if(x1 >= 5){
if(x2 > 6){
return 2;
}
else if(x1 >= 8){
return 0;
}
else{
return 8;
}
}
else if(x1 <= 2){
if(x2 >= 7){
return 4;
}
else{
return 3;
}
}
else{
return 10;
}
}
}