largeRCRF/R/loadForest.R

80 lines
3.5 KiB
R
Raw Normal View History

#' Load Random Forest
#'
#' Loads a random forest that was saved using \code{\link{saveForest}}.
#'
#' @param forest The directory created that saved the previous forest.
#' @return A JForest object; see \code{\link{train}} for details.
#' @export
#' @seealso \code{\link{train}}, \code{\link{saveForest}}, \code{\link{loadForestArg}}
#' @examples
#' # Regression Example
#' x1 <- rnorm(1000)
#' x2 <- rnorm(1000)
#' y <- 1 + x1 + x2 + rnorm(1000)
#'
#' data <- data.frame(x1, x2, y)
#' forest <- train(y ~ x1 + x2, data,
#' ntree=100, numberOfSplits = 5, mtry = 1, nodeSize = 5)
#'
#' saveForest(forest, "trees")
#' new_forest <- loadForest("trees")
loadForest <- function(directory){
# First load the response combiners and the split finders
nodeResponseCombiner.java <- .jcall(.class_DataUtils, makeResponse(.class_Object), "loadObject", paste0(directory, "/nodeResponseCombiner.jData"))
nodeResponseCombiner.java <- .jcast(nodeResponseCombiner.java, .class_ResponseCombiner)
splitFinder.java <- .jcall(.class_DataUtils, makeResponse(.class_Object), "loadObject", paste0(directory, "/splitFinder.jData"))
splitFinder.java <- .jcast(splitFinder.java, .class_SplitFinder)
forestResponseCombiner.java <- .jcall(.class_DataUtils, makeResponse(.class_Object), "loadObject", paste0(directory, "/forestResponseCombiner.jData"))
forestResponseCombiner.java <- .jcast(forestResponseCombiner.java, .class_ResponseCombiner)
covariateList <- .jcall(.class_DataUtils, makeResponse(.class_Object), "loadObject", paste0(directory, "/covariateList.jData"))
covariateList <- .jcast(covariateList, .class_List)
params <- readRDS(paste0(directory, "/parameters.rData"))
call <- readRDS(paste0(directory, "/call.rData"))
params$nodeResponseCombiner$javaObject <- nodeResponseCombiner.java
params$splitFinder$javaObject <- splitFinder.java
params$forestResponseCombiner$javaObject <- forestResponseCombiner.java
forest <- loadForestArgumentsSpecified(directory, params$nodeResponseCombiner, params$splitFinder, params$forestResponseCombiner, covariateList, call,
params$ntree, params$numberOfSplits, params$mtry, params$nodeSize, params$maxNodeDepth, params$splitPureNodes)
return(forest)
}
# Internal function - if you really need to use it yourself (say to load forests
# saved directly through the Java interface into R), then look at the loadForest
# function to see how this function is used. I'm also open to writing a function
# that uses the Java version's settings yaml file to recreate the forest, but
# I'd appreciate knowing that someone's going to use it first (email me; see
# README).
loadForestArgumentsSpecified <- function(treeDirectory, nodeResponseCombiner, splitFinder, forestResponseCombiner,
covariateList.java, call, ntree, numberOfSplits, mtry, nodeSize, maxNodeDepth = 100000, splitPureNodes=TRUE){
params <- list(
splitFinder=splitFinder,
nodeResponseCombiner=nodeResponseCombiner,
forestResponseCombiner=forestResponseCombiner,
ntree=ntree,
numberOfSplits=numberOfSplits,
mtry=mtry,
nodeSize=nodeSize,
splitPureNodes=splitPureNodes,
maxNodeDepth = maxNodeDepth
)
forest.java <- .jcall(.class_DataUtils, makeResponse(.class_Forest), "loadForest", treeDirectory, forestResponseCombiner$javaObject)
forestObject <- list(call=call, javaObject=forest.java, covariateList=covariateList.java, params=params)
class(forestObject) <- "JRandomForest"
return(forestObject)
}