largeRCRF/R/vimp.R

175 lines
5.9 KiB
R
Raw Normal View History

2019-08-12 21:19:45 +00:00
#' Variable Importance
#'
#' Calculate variable importance by recording the increase in error when a given
#' predictor is randomly permuted. Regression forests uses mean squared error;
#' competing risks uses integrated Brier score.
#'
#' @param forest The forest that was trained.
#' @param newData A test set of the data if available. If not, then out of bag
#' errors will be attempted on the training set.
#' @param randomSeed The source of randomness used to permute the values. Can be
#' left blank.
#' @param events If using competing risks forest, the events that the error
#' measure used for VIMP should be calculated on.
#' @param time If using competing risks forest, the upper bound of the
#' integrated Brier score.
#' @param censoringDistribution (Optional) If using competing risks forest, the
#' censoring distribution. See \code{\link{integratedBrierScore} for details.}
#' @param eventWeights (Optional) If using competing risks forest, weights to be
#' applied to the error for each of the \code{events}.
#'
#' @return A named numeric vector of importance values.
#' @export
#'
#' @examples
#' data(wihs)
#'
#' forest <- train(CR_Response(status, time) ~ ., wihs,
#' ntree = 100, numberOfSplits = 0, mtry=3, nodeSize = 5)
#'
#' vimp(forest, events = 1:2, time = 8.0)
#'
vimp <- function(
forest,
newData = NULL,
randomSeed = NULL,
type = c("mean", "z", "raw"),
events = NULL,
time = NULL,
censoringDistribution = NULL,
eventWeights = NULL){
if(is.null(newData) & is.null(forest$dataset)){
stop("forest doesn't have a copy of the training data loaded (this happens if you just loaded it); please manually specify newData and possibly out.of.bag")
}
# Basically we check if type is either null, length 0, or one of the invalid values.
# We can't include the last statement in the same statement as length(tyoe) < 1,
# because R checks both cases and a different error would display if length(type) == 0
typeError = is.null(type) | length(type) < 1
if(!typeError){
typeError = !(type[1] %in% c("mean", "z", "raw"))
}
if(typeError){
stop("A valid response type must be provided.")
}
if(is.null(newData)){
data.java <- forest$dataset
out.of.bag <- TRUE
}
else{ # newData is provided
data.java <- processFormula(forest$formula, newData, forest$covariateList)$dataset
out.of.bag <- FALSE
}
predictionClass <- forest$params$forestResponseCombiner$outputClass
if(predictionClass == "CompetingRiskFunctions"){
if(is.null(time) | length(time) != 1){
stop("time must be set at length 1")
}
errorCalculator.java <- ibsCalculatorWrapper(
events = events,
time = time,
censoringDistribution = censoringDistribution,
eventWeights = eventWeights)
} else if(predictionClass == "numeric"){
errorCalculator.java <- .jnew(.class_RegressionErrorCalculator)
errorCalculator.java <- .jcast(errorCalculator.java, .class_ErrorCalculator)
} else{
stop(paste0("VIMP not yet supported for ", predictionClass, ". If you're just using a non-custom version of largeRCRF then this is a bug and should be reported."))
}
forest.trees.java <- .jcall(forest$javaObject, makeResponse(.class_List), "getTrees")
vimp.calculator <- .jnew(.class_VariableImportanceCalculator,
errorCalculator.java,
forest.trees.java,
data.java,
out.of.bag # isTrainingSet parameter
)
random.java <- NULL
if(!is.null(randomSeed)){
random.java <- .jnew(.class_Random, .jlong(as.integer(randomSeed)))
}
random.java <- .object_Optional(random.java)
covariateRList <- convertJavaListToR(forest$covariateList, class = .class_Covariate)
importanceValues <- matrix(nrow = forest$params$ntree, ncol = length(covariateRList))
colnames(importanceValues) <- extractCovariateNamesFromJavaList(forest$covariateList)
for(j in 1:length(covariateRList)){
covariateJava <- covariateRList[[j]]
covariateJava <-
importanceValues[, j] <- .jcall(vimp.calculator, "[D", "calculateVariableImportanceRaw", covariateJava, random.java)
}
if(type[1] == "raw"){
return(importanceValues)
} else if(type[1] == "mean"){
meanImportanceValues <- apply(importanceValues, 2, mean)
return(meanImportanceValues)
} else if(type[1] == "z"){
zImportanceValues <- apply(importanceValues, 2, function(x){
meanValue <- mean(x)
standardError <- sd(x)/sqrt(length(x))
return(meanValue / standardError)
})
return(zImportanceValues)
} else{
stop("A valid response type must be provided.")
}
return(importance)
}
# Internal function
ibsCalculatorWrapper <- function(events, time, censoringDistribution = NULL, eventWeights = NULL){
if(is.null(events)){
stop("events must be specified if using vimp on competing risks data")
}
if(is.null(time)){
stop("time must be specified if using vimp on competing risks data")
}
java.censoringDistribution <- NULL
if(!is.null(censoringDistribution)){
java.censoringDistribution <- processCensoringDistribution(censoringDistribution)
java.censoringDistribution <- .object_Optional(java.censoringDistribution)
}
else{
java.censoringDistribution <- .object_Optional(NULL)
}
ibsCalculator.java <- .jnew(.class_IBSCalculator, java.censoringDistribution)
if(is.null(eventWeights)){
eventWeights <- rep(1, times = length(events))
}
ibsCalculatorWrapper.java <- .jnew(.class_IBSErrorCalculatorWrapper,
ibsCalculator.java,
.jarray(as.integer(events)),
as.numeric(time),
.jarray(as.numeric(eventWeights)))
ibsCalculatorWrapper.java <- .jcast(ibsCalculatorWrapper.java, .class_ErrorCalculator)
return(ibsCalculatorWrapper.java)
}