largeRCRF/R/processFormula.R

95 lines
3.4 KiB
R
Raw Normal View History

2019-08-12 21:19:45 +00:00
# Internal function that takes a formula and processes it for use in the Java
# code. existingCovariateList is optional; if not provided then a new one is
# created internally.
processFormula <- function(formula, data, covariateList.java = NULL, na.penalty = NULL){
2019-08-12 21:19:45 +00:00
# Having an R copy of the data loaded at the same time can be wasteful; we
# also allow users to provide an environment of the data which gets removed
# after being imported into Java
if(class(data) == "environment"){
if(is.null(data$data)){
stop("When providing an environment with the dataset, the environment must contain an item called 'data'")
}
env <- data
data <- env$data
env$data <- NULL
gc()
}
yVar <- formula[[2]]
responses <- NULL
variablesToDrop <- character(0)
# yVar is a call object; as.character(yVar) will be the different components, including the parameters.
# if the length of yVar is > 1 then it's a function call. If the length is 1, and it's not in data,
# then we also need to explicitly evaluate it
if(class(yVar) == "call" || !(as.character(yVar) %in% colnames(data))){
# yVar is a function like CR_Response
responses <- eval(expr=yVar, envir=data)
if(class(formula[[3]]) == "name" && as.character(formula[[3]])=="."){
# do any of the variables match data in data? We need to track that so we can drop them later
variablesToDrop <- as.character(yVar)[as.character(yVar) %in% names(data)]
}
formula[[2]] <- NULL
} else if(class(yVar) == "name"){ # and implicitly yVar is contained in data
variablesToDrop <- as.character(yVar)
}
# Includes responses which we may need to later cut out if `.` was used on the
# right-hand-side
filteredData <- stats::model.frame(formula=formula, data=data, na.action=stats::na.pass)
if(is.null(responses)){ # If this if-statement runs then we have a simple (i.e. numeric) response
responses <- stats::model.response(filteredData)
}
# remove any response variables on the right-hand-side
covariateData <- filteredData[, !(names(filteredData) %in% variablesToDrop), drop=FALSE]
# Now that we know how many predictor variables we have, we should check na.penalty
if(!is.null(na.penalty)){
if(!is.numeric(na.penalty) & !is.logical(na.penalty)){
stop("na.penalty must be either logical or numeric.")
}
if(is.logical(na.penalty) & length(na.penalty) != 1 & length(na.penalty) != ncol(covariateData)){
stop("na.penalty must have length of either 1 or the number of predictor variables if logical.")
}
if(is.numeric(na.penalty) & length(na.penalty) != 1){
stop("na.penalty must have length 1 if logical.")
}
if(anyNA(na.penalty)){
stop("na.penalty cannot contain NAs.")
}
# All good; now to transform it.
if(is.numeric(na.penalty)){
na.threshold <- na.penalty
na.penalty <- apply(covariateData, 2, function(x){mean(is.na(x))}) >= na.threshold
}
else if(is.logical(na.penalty) & length(na.penalty) == 1){
na.penalty <- rep(na.penalty, times = ncol(covariateData))
}
# else{} - na.penalty is logical and the correct length; no need to do anything to it
}
2019-08-12 21:19:45 +00:00
dataset <- loadData(
covariateData,
colnames(covariateData),
responses,
covariateList.java = covariateList.java,
na.penalty = na.penalty
)
2019-08-12 21:19:45 +00:00
return(dataset)
}