75 lines
3.1 KiB
R
75 lines
3.1 KiB
R
|
|
||
|
|
||
|
#' Load Random Forest
|
||
|
#'
|
||
|
#' Loads a random forest that was saved using \code{\link{save_forest}}.
|
||
|
#'
|
||
|
#' @param forest The directory created that saved the previous forest.
|
||
|
#' @return A JForest object; see \code{\link{train}} for details.
|
||
|
#' @export
|
||
|
#' @seealso \code{\link{train}}, \code{\link{save_forest}}
|
||
|
#' @examples
|
||
|
#' # Regression Example
|
||
|
#' x1 <- rnorm(1000)
|
||
|
#' x2 <- rnorm(1000)
|
||
|
#' y <- 1 + x1 + x2 + rnorm(1000)
|
||
|
#'
|
||
|
#' data <- data.frame(x1, x2, y)
|
||
|
#' forest <- train(y ~ x1 + x2, data,
|
||
|
#' ntree=100, numberOfSplits = 5, mtry = 1, nodeSize = 5)
|
||
|
#'
|
||
|
#' save_forest(forest, "trees")
|
||
|
#' new_forest <- load_forest("trees")
|
||
|
load_forest <- function(directory){
|
||
|
|
||
|
# First load the response combiners and the split finders
|
||
|
nodeResponseCombiner.java <- .jcall(.class_DataUtils, makeResponse(.class_Object), "loadObject", paste0(directory, "/nodeResponseCombiner.jData"))
|
||
|
nodeResponseCombiner.java <- .jcast(nodeResponseCombiner.java, .class_ResponseCombiner)
|
||
|
|
||
|
splitFinder.java <- .jcall(.class_DataUtils, makeResponse(.class_Object), "loadObject", paste0(directory, "/splitFinder.jData"))
|
||
|
splitFinder.java <- .jcast(splitFinder.java, .class_SplitFinder)
|
||
|
|
||
|
forestResponseCombiner.java <- .jcall(.class_DataUtils, makeResponse(.class_Object), "loadObject", paste0(directory, "/forestResponseCombiner.jData"))
|
||
|
forestResponseCombiner.java <- .jcast(forestResponseCombiner.java, .class_ResponseCombiner)
|
||
|
|
||
|
covariateList <- .jcall(.class_DataUtils, makeResponse(.class_Object), "loadObject", paste0(directory, "/covariateList.jData"))
|
||
|
covariateList <- .jcast(covariateList, .class_List)
|
||
|
|
||
|
params <- readRDS(paste0(directory, "/parameters.rData"))
|
||
|
call <- readRDS(paste0(directory, "/call.rData"))
|
||
|
|
||
|
params$nodeResponseCombiner$javaObject <- nodeResponseCombiner.java
|
||
|
params$splitFinder$javaObject <- splitFinder.java
|
||
|
params$forestResponseCombiner$javaObject <- forestResponseCombiner.java
|
||
|
|
||
|
forest <- load_forest_args_provided(directory, params$nodeResponseCombiner, params$splitFinder, params$forestResponseCombiner, covariateList, call,
|
||
|
params$ntree, params$numberOfSplits, params$mtry, params$nodeSize, params$maxNodeDepth, params$splitPureNodes)
|
||
|
|
||
|
return(forest)
|
||
|
|
||
|
}
|
||
|
|
||
|
#' @export
|
||
|
load_forest_args_provided <- function(treeDirectory, nodeResponseCombiner, splitFinder, forestResponseCombiner,
|
||
|
covariateList.java, call, ntree, numberOfSplits, mtry, nodeSize, maxNodeDepth = 100000, splitPureNodes=TRUE){
|
||
|
|
||
|
params <- list(
|
||
|
splitFinder=splitFinder,
|
||
|
nodeResponseCombiner=nodeResponseCombiner,
|
||
|
forestResponseCombiner=forestResponseCombiner,
|
||
|
ntree=ntree,
|
||
|
numberOfSplits=numberOfSplits,
|
||
|
mtry=mtry,
|
||
|
nodeSize=nodeSize,
|
||
|
splitPureNodes=splitPureNodes,
|
||
|
maxNodeDepth = maxNodeDepth
|
||
|
)
|
||
|
|
||
|
forest.java <- .jcall(.class_DataUtils, makeResponse(.class_Forest), "loadForest", treeDirectory, forestResponseCombiner$javaObject)
|
||
|
|
||
|
forestObject <- list(call=call, javaObject=forest.java, covariateList=covariateList.java, params=params)
|
||
|
class(forestObject) <- "JRandomForest"
|
||
|
|
||
|
return(forestObject)
|
||
|
|
||
|
}
|