% Generated by roxygen2: do not edit by hand % Please edit documentation in R/predict.R \name{predict.JRandomForest} \alias{predict.JRandomForest} \title{Predict} \usage{ \method{predict}{JRandomForest}(forest, newData = NULL, parallel = TRUE, out.of.bag = FALSE) } \arguments{ \item{forest}{A forest that was previously \code{\link{train}}ed} \item{newData}{The new data containing all of the previous predictor covariates. Note that even if predictions are being made on the training set, the dataset must be specified. \code{largeRCRF} doesn't keep track of the dataset after the forest is trained.} \item{parallel}{A logical indicating whether multiple cores should be utilized when making the predictions. Available as an option because it's been observed that using Java's \code{parallelStream} can be unstable on some systems. Default value is \code{TRUE}; only set to \code{FALSE} if you get strange errors while predicting.} \item{out.of.bag}{A logical indicating whether predictions should be based on 'out of bag' trees; set only to \code{TRUE} if you're running predictions on data that was used in the training. Default value is \code{FALSE}.} } \value{ A list of responses corresponding with each row of \code{newData} if it's a non-regression random forest; otherwise it returns a numeric vector. } \description{ Predict on the random forest. } \examples{ # Regression Example x1 <- rnorm(1000) x2 <- rnorm(1000) y <- 1 + x1 + x2 + rnorm(1000) data <- data.frame(x1, x2, y) forest <- train(y ~ x1 + x2, data, ntree=100, numberOfSplits = 5, mtry = 1, nodeSize = 5) # Fix x2 to be 0 newData <- data.frame(x1 = seq(from=-2, to=2, by=0.5), x2 = 0) ypred <- predict(forest, newData) plot(ypred ~ newData$x1, type="l") # Competing Risk Example x1 <- abs(rnorm(1000)) x2 <- abs(rnorm(1000)) T1 <- rexp(1000, rate=x1) T2 <- rweibull(1000, shape=x1, scale=x2) C <- rexp(1000) u <- pmin(T1, T2, C) delta <- ifelse(u==T1, 1, ifelse(u==T2, 2, 0)) data <- data.frame(x1, x2) forest <- train(CR_Response(delta, u) ~ x1 + x2, data, ntree=100, numberOfSplits=5, mtry=1, nodeSize=10) newData <- data.frame(x1 = c(-1, 0, 1), x2 = 0) ypred <- predict(forest, newData) }