#' Integrated Brier Score #' #' Used to calculate the Integrated Brier Score, which for the competing risks #' setting is the integral of the squared difference between each observed #' cumulative incidence function (CIF) for each observation and the #' corresponding predicted CIF. If the survivor function (1 - CDF) of the #' censoring distribution is provided, weights can be calculated to account for #' the censoring. #' #' @return A numeric vector of the Integrated Brier Score for each prediction. #' @param responses A list of responses corresponding to the provided #' mortalities; use \code{\link{CR_Response}}. #' @param predictions The predictions to be tested against. #' @param event The event type for the error to be calculated on. #' @param time \code{time} specifies the upper bound of the integral. #' @param censoringDistribution Optional; if provided then weights are #' calculated on the errors. There are three ways to provide it - \itemize{ #' \item{If you have all the censor times and just want to use a simple #' empirical estimate of the distribution, just provide a numeric vector of #' all of the censor times and it will be automatically calculated.} \item{You #' can directly specify the survivor function by providing a list with two #' numeric vectors called \code{x} and \code{y}. They should be of the same #' length and correspond to each point. It is assumed that previous to the #' first value in \code{y} the \code{y} value is 1.0; and that the function #' you provide is a right-continuous step function.} \item{You can provide a #' function from \code{\link[stats]{stepfun}}. Note that this only supports #' functions where \code{right = FALSE} (default), and that the first y value #' (corresponding to y before the first x value) will be to set to 1.0 #' regardless of what is specified.} #' #' } #' @param parallel A logical indicating whether multiple cores should be #' utilized when calculating the error. Available as an option because it's #' been observed that using Java's \code{parallelStream} can be unstable on #' some systems. Default value is \code{TRUE}; only set to \code{FALSE} if you #' get strange errors while predicting. #' #' @export #' @references Section 4.2 of Ishwaran H, Gerds TA, Kogalur UB, Moore RD, Gange #' SJ, Lau BM (2014). “Random Survival Forests for Competing Risks.” #' Biostatistics, 15(4), 757–773. doi:10.1093/ biostatistics/kxu010. #' #' @examples #' data <- data.frame(delta=c(1,1,0,0,2,2), T=1:6, x=1:6) #' #' model <- train(CR_Response(delta, T) ~ x, data, ntree=100, numberOfSplits=0, mtry=1, nodeSize=1) #' #' newData <- data.frame(delta=c(1,0,2,1,0,2), T=1:6, x=1:6) #' predictions <- predict(model, newData) #' #' scores <- integratedBrierScore(CR_Response(data$delta, data$T), predictions, 1, 6.0) #' integratedBrierScore <- function(responses, predictions, event, time, censoringDistribution = NULL, parallel = TRUE){ if(length(responses$eventTime) != length(predictions)){ stop("Length of responses and predictions must be equal.") } java.censoringDistribution <- NULL if(!is.null(censoringDistribution)){ java.censoringDistribution <- processCensoringDistribution(censoringDistribution) java.censoringDistribution <- .object_Optional(java.censoringDistribution) } else{ java.censoringDistribution <- .object_Optional(NULL) } predictions.java <- lapply(predictions, function(x){return(x$javaObject)}) predictions.java <- convertRListToJava(predictions.java) errors <- .jcall(.class_CompetingRiskUtils, "[D", "calculateIBSError", responses$javaObject, predictions.java, java.censoringDistribution, as.integer(event), time, parallel) return(errors) }