# Internal function convertRListToJava <- function(lst){ javaList <- .jnew(.class_ArrayList, as.integer(length(lst))) javaList <- .jcast(javaList, .class_List) for (item in lst){ if (class(item) != "jobjRef" & class(item) != "jarrayRef"){ stop("All items in the list must be rJava Java objects") } .jcall(javaList, "Z", "add", .jcast(item, .class_Object)) } return(javaList) } #' @export print.SplitFinder = function(x, ...) print(x$call) #' @export print.ResponseCombiner = function(x, ...) print(x$call) #' @export print.JRandomForest <- function(x, ...){ cat("Call:\n") print(x$call) cat("\nParameters:\n") cat("\tSplit Finder: "); print(x$params$splitFinder$call) cat("\tTerminal Node Response Combiner: "); print(x$params$nodeResponseCombiner$call) cat("\tForest Response Combiner: "); print(x$params$forestResponseCombiner$call) cat("\t# of trees: "); cat(x$params$ntree); cat("\n") cat("\t# of Splits: "); cat(x$params$numberOfSplits); cat("\n") cat("\t# of Covariates to try: "); cat(x$params$mtry); cat("\n") cat("\tNode Size: "); cat(x$params$nodeSize); cat("\n") cat("\tMax Node Depth: "); cat(x$params$maxNodeDepth); cat("\n") cat("Try using me with predict() or one of the relevant commands to determine error\n") } #' @export print.CompetingRiskFunctions.List <- function(x, ...){ cat("Number of predictions: ") cat(length(x)) cat("\n\nSee the help page ?CompetingRiskPredictions for a list of relevant functions on how to use this object.\n") } #' @export print.CompetingRiskFunctions <- function(x, ...){ mx <- ncol(x$cif) cat(mx); cat(" CIFs available\n") cat(mx); cat(" CHFs available\n") cat("An overall survival curve available\n") cat("\nSee the help page ?CompetingRiskPredictions for a list of relevant functions on how to use this object.\n") }