largeRCRF/tests/testthat/test_running_environment.R
Joel Therrien fdc708dad5 New features -
Add support for making predictions without specifying training data
Add support for adding trees to an existing forest
Add support for toggling displayProgress

Also reduced the size of the package by removing some unused dependency
classes.
2019-06-19 13:15:43 -07:00

28 lines
761 B
R

context("Train and predict without error using an environment")
test_that("Training with environment works", {
sampleData <- data.frame(x=rnorm(100))
sampleData$T <- rexp(100) + abs(sampleData$x)
sampleData$delta <- sample(0:2, size = 100, replace=TRUE)
testData <- sampleData[1:5,]
trainingData <- sampleData[6:100,]
e <- new.env()
e$data <- trainingData
rm(trainingData)
forest <- train(CR_Response(delta, T) ~ x, e, ntree=50, numberOfSplits=0, mtry=1, nodeSize=5, cores=2, displayProgress=FALSE)
expect_null(e$data)
predictions <- predict(forest, testData)
forest <- addTrees(forest, 50, displayProgress = FALSE)
predictions <- predict(forest, testData)
expect_true(T) # show Ok if we got this far
})