49 lines
1.7 KiB
R
49 lines
1.7 KiB
R
% Generated by roxygen2: do not edit by hand
|
||
% Please edit documentation in R/cr_naiveConcordance.R
|
||
\name{naiveConcordance}
|
||
\alias{naiveConcordance}
|
||
\title{Naive Concordance}
|
||
\usage{
|
||
naiveConcordance(responses, predictedMortalities)
|
||
}
|
||
\arguments{
|
||
\item{responses}{A list of responses corresponding to the provided
|
||
mortalities; use \code{\link{CR_Response}}.}
|
||
|
||
\item{predictedMortalities}{A list of mortality vectors; each element of the
|
||
list should correspond to one of the events in the order of event 1 to J,
|
||
and should be a vector of the same length as responses.}
|
||
}
|
||
\value{
|
||
A vector of 1 minus the concordance scores, with each element
|
||
corresponding to one of the events. To be clear, the lower the score the
|
||
more accurate the model was.
|
||
}
|
||
\description{
|
||
Used to calculate a concordance index error. The user needs to supply a list
|
||
of mortalities, with each item in the list being a vector for the
|
||
corresponding event. To calculate mortalities a user should look to
|
||
\code{\link{extractMortalities}}.
|
||
}
|
||
\examples{
|
||
data <- data.frame(delta=c(1,1,0,0,2,2), T=1:6, x=1:6)
|
||
|
||
model <- train(CR_Response(delta, T) ~ x, data, ntree=100, numberOfSplits=0, mtry=1, nodeSize=1)
|
||
|
||
newData <- data.frame(delta=c(1,0,2,1,0,2), T=1:6, x=1:6)
|
||
predictions <- predict(model, newData)
|
||
|
||
mortalities <- list(
|
||
extractMortalities(predictions, 1, 6),
|
||
extractMortalities(predictions, 2, 6)
|
||
)
|
||
|
||
naiveConcordance(CR_Response(newData$delta, newData$T), mortalities)
|
||
|
||
}
|
||
\references{
|
||
Section 3.2 of Wolbers, Marcel, Paul Blanche, Michael T. Koller,
|
||
Jacqueline C M Witteman, and Thomas A Gerds. 2014. “Concordance for
|
||
Prognostic Models with Competing Risks.” Biostatistics 15 (3): 526–39.
|
||
https://doi.org/10.1093/biostatistics/kxt059.
|
||
}
|