largeRCRF/man/predict.JRandomForest.Rd
Joel Therrien fdc708dad5 New features -
Add support for making predictions without specifying training data
Add support for adding trees to an existing forest
Add support for toggling displayProgress

Also reduced the size of the package by removing some unused dependency
classes.
2019-06-19 13:15:43 -07:00

66 lines
2.1 KiB
R

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/predict.R
\name{predict.JRandomForest}
\alias{predict.JRandomForest}
\title{Predict}
\usage{
\method{predict}{JRandomForest}(forest, newData = NULL,
parallel = TRUE, out.of.bag = NULL)
}
\arguments{
\item{forest}{A forest that was previously \code{\link{train}}ed}
\item{newData}{The new data containing all of the previous predictor
covariates. Can be NULL if you want to use the training dataset, and
\code{forest} hasn't been loaded from the disk; otherwise you'll have to
specify it.}
\item{parallel}{A logical indicating whether multiple cores should be
utilized when making the predictions. Available as an option because it's
been observed that using Java's \code{parallelStream} can be unstable on
some systems. Default value is \code{TRUE}; only set to \code{FALSE} if you
get strange errors while predicting.}
\item{out.of.bag}{A logical indicating whether predictions should be based on
'out of bag' trees; set only to \code{TRUE} if you're running predictions
on data that was used in the training. Default value is \code{TRUE} if
\code{newData} is \code{NULL}, otherwise \code{FALSE}.}
}
\value{
A list of responses corresponding with each row of \code{newData} if
it's a non-regression random forest; otherwise it returns a numeric vector.
}
\description{
Predict on the random forest.
}
\examples{
# Regression Example
x1 <- rnorm(1000)
x2 <- rnorm(1000)
y <- 1 + x1 + x2 + rnorm(1000)
data <- data.frame(x1, x2, y)
forest <- train(y ~ x1 + x2, data, ntree=100, numberOfSplits = 5, mtry = 1, nodeSize = 5)
# Fix x2 to be 0
newData <- data.frame(x1 = seq(from=-2, to=2, by=0.5), x2 = 0)
ypred <- predict(forest, newData)
plot(ypred ~ newData$x1, type="l")
# Competing Risk Example
x1 <- abs(rnorm(1000))
x2 <- abs(rnorm(1000))
T1 <- rexp(1000, rate=x1)
T2 <- rweibull(1000, shape=x1, scale=x2)
C <- rexp(1000)
u <- pmin(T1, T2, C)
delta <- ifelse(u==T1, 1, ifelse(u==T2, 2, 0))
data <- data.frame(x1, x2)
forest <- train(CR_Response(delta, u) ~ x1 + x2, data, ntree=100, numberOfSplits=5, mtry=1, nodeSize=10)
newData <- data.frame(x1 = c(-1, 0, 1), x2 = 0)
ypred <- predict(forest, newData)
}