largeRCRF/tests/testthat/test_predicting_training_data.R
Joel Therrien fdc708dad5 New features -
Add support for making predictions without specifying training data
Add support for adding trees to an existing forest
Add support for toggling displayProgress

Also reduced the size of the package by removing some unused dependency
classes.
2019-06-19 13:15:43 -07:00

32 lines
No EOL
1 KiB
R

context("Predict without re-specifying training data")
test_that("Can predict without new data", {
trainingData <- data.frame(x=rnorm(100))
trainingData$T <- rexp(100) + abs(trainingData$x)
trainingData$delta <- sample(0:2, size = 100, replace=TRUE)
forest <- train(CR_Response(delta, T) ~ x, trainingData, ntree=50, numberOfSplits=0, mtry=1, nodeSize=5, cores=2, displayProgress=FALSE)
predictions <- predict(forest)
expect_true(T) # show Ok if we got this far
})
test_that("Can connect new data", {
trainingData <- data.frame(x=rnorm(100))
trainingData$T <- rexp(100) + abs(trainingData$x)
trainingData$delta <- sample(0:2, size = 100, replace=TRUE)
forest <- train(CR_Response(delta, T) ~ x, trainingData, ntree=50, numberOfSplits=0, mtry=1, nodeSize=5, cores=2, displayProgress=FALSE)
forest$dataset <- NULL
forest <- connectToData(forest, CR_Response(trainingData$delta, trainingData$T), trainingData)
predictions <- predict(forest)
expect_true(T) # show Ok if we got this far
})