Add support for setting max difficulty.

TODO is to support for min difficulty.
This commit is contained in:
Joel Therrien 2020-09-24 13:48:37 -07:00
parent 6df119d4c9
commit fa370ed9a9
3 changed files with 881 additions and 630 deletions

View file

@ -3,6 +3,59 @@ use rand::prelude::*;
use sudoku_solver::grid::{Grid, CellValue};
use std::error::Error;
use std::io::Write;
use sudoku_solver::solver::SolveController;
use std::str::FromStr;
#[derive(Clone)] // Needed for argparse
enum Difficulty {
Hard,
Medium,
Easy
}
impl Difficulty {
fn map_to_solve_controller(&self) -> SolveController {
let mut controller = SolveController{
determine_uniqueness: true,
search_singles: true,
search_hidden_singles: true,
find_possibility_groups: true,
search_useful_constraint: true,
make_guesses: true
};
match self {
Difficulty::Hard => {} // Do nothing, already hard
Difficulty::Medium => {
controller.make_guesses = false;
},
Difficulty::Easy => {
controller.make_guesses = false;
controller.search_useful_constraint = false;
controller.find_possibility_groups = false;
}
}
controller
}
}
impl FromStr for Difficulty { // Needed for argparse
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
if s.eq_ignore_ascii_case("EASY"){
return Ok(Difficulty::Easy);
} else if s.eq_ignore_ascii_case("MEDIUM"){
return Ok(Difficulty::Medium);
} else if s.eq_ignore_ascii_case("HARD"){
return Ok(Difficulty::Hard);
}
return Err(format!("{} is not a valid difficulty", s));
}
}
fn main() {
@ -13,6 +66,7 @@ fn main() {
let mut max_hints = 81;
let mut max_attempts = 100;
let mut filename : Option<String> = None;
let mut difficulty = Difficulty::Hard;
{ // this block limits scope of borrows by ap.refer() method
let mut ap = argparse::ArgumentParser::new();
@ -21,7 +75,7 @@ fn main() {
.add_option(&["--debug"], argparse::StoreTrue, "Run in debug mode");
ap.refer(&mut seed)
.add_option(&["--seed"], argparse::Store, "Provide seed for puzzle generation");
.add_option(&["-s", "--seed"], argparse::Store, "Provide seed for puzzle generation");
ap.refer(&mut max_hints)
.add_option(&["--hints"], argparse::Store, "Only return a puzzle with less than or equal to this number of hints");
@ -32,6 +86,9 @@ fn main() {
ap.refer(&mut filename)
.add_argument("filename", argparse::StoreOption, "Optional filename to store puzzle in as a CSV");
ap.refer(&mut difficulty)
.add_option(&["-d", "--difficulty"], argparse::Store, "Max difficulty setting; values are EASY, MEDIUM, or HARD");
ap.parse_args_or_exit();
}
@ -46,6 +103,10 @@ fn main() {
if debug {
println!("Using seed {}", seed);
}
let solve_controller = difficulty.map_to_solve_controller();
let mut rng = ChaCha8Rng::seed_from_u64(seed);
let mut num_attempts = 0;
@ -56,7 +117,7 @@ fn main() {
return;
}
let (grid, num_hints) = sudoku_solver::generator::generate_grid(&mut rng);
let (grid, num_hints) = sudoku_solver::generator::generate_grid(&mut rng, &solve_controller);
num_attempts = num_attempts + 1;
if num_hints <= max_hints {

View file

@ -1,56 +1,11 @@
use crate::grid::{Cell, Grid, CellValue, Line};
use crate::solver::{solve_grid_no_guess, SolveStatus, find_smallest_cell};
use crate::solver::{SolveStatus, SolveController, Uniqueness, evaluate_grid_with_solve_controller};
use std::rc::Rc;
use rand::prelude::*;
use rand_chacha::ChaCha8Rng;
pub static mut DEBUG : bool = false;
// Extension of SolveStatus
#[derive(Debug, Eq, PartialEq)]
pub enum GenerateStatus {
UniqueSolution,
Unfinished,
NoSolution,
NotUniqueSolution
}
impl GenerateStatus {
fn increment(self, new_status : GenerateStatus) -> GenerateStatus {
match self {
GenerateStatus::UniqueSolution => {
match new_status {
GenerateStatus::UniqueSolution => GenerateStatus::NotUniqueSolution, // We now have two completes, so the solutions are not unique
GenerateStatus::NoSolution => GenerateStatus::UniqueSolution, // We already have a complete, so no issue with another guess being invalid
GenerateStatus::Unfinished => {panic!("Should not have encountered an UNFINISHED status")},
GenerateStatus::NotUniqueSolution => GenerateStatus::NotUniqueSolution // That solver found multiple solutions so no need to keep checking
}
},
GenerateStatus::Unfinished => {
match new_status {
GenerateStatus::UniqueSolution => GenerateStatus::UniqueSolution,
GenerateStatus::NoSolution => GenerateStatus::Unfinished,
GenerateStatus::Unfinished => {panic!("Should not have encountered an UNFINISHED status")},
GenerateStatus::NotUniqueSolution => GenerateStatus::NotUniqueSolution // That solver found multiple solutions so no need to keep checking
}
},
GenerateStatus::NotUniqueSolution => GenerateStatus::NotUniqueSolution,
GenerateStatus::NoSolution => GenerateStatus::NoSolution // This guess didn't pan out
}
}
}
impl SolveStatus {
fn map_to_generate_status(self) -> GenerateStatus {
match self {
SolveStatus::Complete => {GenerateStatus::UniqueSolution }
SolveStatus::Unfinished => {GenerateStatus::Unfinished }
SolveStatus::Invalid => {GenerateStatus::NoSolution }
}
}
}
impl Grid {
fn get_random_empty_cell(&self, rng : &mut ChaCha8Rng) -> Result<Rc<Cell>, &str> {
// Idea - put all empty cells into a vector and choose one at random
@ -153,94 +108,17 @@ impl Line {
}
}
pub fn generate_grid(rng: &mut ChaCha8Rng) -> (Grid, i32) {
pub fn generate_grid(rng: &mut ChaCha8Rng, solve_controller: &SolveController) -> (Grid, i32) {
let mut num_hints;
let mut grid : Grid = loop {
// First step; randomly assign 8 different digits to different empty cells and see if there's a possible solution
// We have to ensure that 8 of the digits appear at least once, otherwise the solution can't be unique because you could interchange the two missing digits throughout the puzzle
// We do this in a loop so that if we are really unlucky and our guesses stop there from being any solution, we can easily re-run it
let mut grid = Grid::new();
num_hints = 0;
let mut grid = generate_completed_grid(rng);
let mut num_hints = 81;
let digit_excluded = rng.gen_range(1, 10);
for digit in 1..10 {
if digit != digit_excluded {
let cell = grid.get_random_empty_cell(rng);
cell.unwrap().set(digit);
num_hints = num_hints + 1;
}
}
let status = solve_grid(&mut grid);
match status {
GenerateStatus::UniqueSolution => { // very surprising result, given that the smallest puzzles found have 14 guesses
eprintln!("Wow! A puzzle with only 8 guesses have been found");
return (grid, num_hints);
}
GenerateStatus::Unfinished => {panic!("solve_grid should never return UNFINISHED")}
GenerateStatus::NoSolution => {continue;} // unlucky; try again
GenerateStatus::NotUniqueSolution => {break grid;}
};
};
// Alright, we now have a grid that we can start adding more guesses onto until we find a unique solution
grid =
'outer: loop {
num_hints = num_hints + 1;
let cell = grid.get_random_empty_cell(rng).unwrap(); // We unwrap because if somehow we're filled each cell without finding a solution, that's reason for a panic
let cell = &*cell;
let mut cell_possibilities = cell.get_value_possibilities().expect("An empty cell has no possibilities");
// Let's scramble the order
cell_possibilities.shuffle(rng);
for (_index, digit) in cell_possibilities.iter().enumerate() {
let grid_clone = grid.clone();
let cell = &*grid_clone.get(cell.x, cell.y).unwrap();
cell.set(*digit);
let status = solve_grid(&grid_clone);
match status {
GenerateStatus::UniqueSolution => { // We're done!
break 'outer grid_clone;
}
GenerateStatus::Unfinished => {
panic!("solve_grid should never return UNFINISHED")
}
GenerateStatus::NoSolution => { // Try another guess
continue;
}
GenerateStatus::NotUniqueSolution => { // We need more guesses
grid = grid_clone;
continue 'outer;
}
}
};
// If we reach this point in the loop, then none of the possibilities for cell provided any solution
// Which means something serious happened before in the solving process - reason for panic
eprint!("No valid hints were found for puzzle\n{} at cell ({}, {})", grid, cell.x, cell.y);
panic!("Unable to continue as puzzle is invalid");
};
// At this point we have a valid puzzle, but from experience it has way too many guesses, and many of them
// are likely not needed. Let's now try removing a bunch.
// We now trim down cells; first going to put them in a vector and shuffle them
let mut non_empty_cells = Vec::new();
for x in 0..9 {
for y in 0..9 {
let cell = grid.get(x, y).unwrap();
let value = &*cell.value.borrow();
match value {
CellValue::Fixed(_) => {non_empty_cells.push(Rc::clone(&cell))}
CellValue::Unknown(_) => {}
}
non_empty_cells.push(Rc::clone(&cell));
}
}
// Need to randomly reorder non_empty_cells
@ -253,92 +131,132 @@ pub fn generate_grid(rng: &mut ChaCha8Rng) -> (Grid, i32) {
cell_clone.delete_value();
let status = solve_grid(&mut grid_clone);
let status = evaluate_grid_with_solve_controller(&mut grid_clone, solve_controller);
match status {
GenerateStatus::UniqueSolution => { // great; that cell value was not needed
SolveStatus::Complete(uniqueness) => {
let uniqueness = uniqueness.unwrap();
match uniqueness {
Uniqueness::Unique => {
num_hints = num_hints - 1;
grid = grid_clone;
}
GenerateStatus::Unfinished => {panic!("solve_grid should never return UNFINISHED")}
GenerateStatus::NoSolution => {panic!("Removing constraints should not have set the # of solutions to zero")}
GenerateStatus::NotUniqueSolution => {continue;} // We can't remove this cell; continue onto the next one (note that grid hasn't been modified)
};
Uniqueness::NotUnique => continue // We can't remove this cell; continue onto the next one (note that grid hasn't been modified because of solve_controller)
}
}
SolveStatus::Unfinished => panic!("evaluate_grid_with_solve_controller should never return UNFINISHED"),
SolveStatus::Invalid => panic!("Removing constraints should not have set the # of solutions to zero")
}
}
return (grid, num_hints);
}
fn solve_grid(grid: &Grid) -> GenerateStatus{
// Code is kind of messy so here it goes - solve_grid first tries to solve without any guesses
// If that's not enough and a guess is required, then solve_grid_guess is called
// solve_grid_guess runs through all the possibilities for the smallest cell, trying to solve them
// through calling this function.
// solve_grid_no_guess tries to solve without any guesses.
let mut grid = grid.clone(); // We're generating a result and don't want to make changes to our input
let mut status = solve_grid_no_guess(&mut grid).map_to_generate_status();
status = match status {
GenerateStatus::Unfinished => {
solve_grid_guess(&mut grid)
},
_ => {status}
// We generate a completed grid with no mind for difficulty; afterward generate_puzzle will take out as many fields as it can with regards to the difficulty
fn generate_completed_grid(rng: &mut ChaCha8Rng) -> Grid {
let solve_controller = SolveController{
determine_uniqueness: true,
search_singles: true,
search_hidden_singles: true,
find_possibility_groups: true,
search_useful_constraint: true,
make_guesses: true
};
let mut grid : Grid = loop {
// First step; randomly assign 8 different digits to different empty cells and see if there's a possible solution
// We have to ensure that 8 of the digits appear at least once, otherwise the solution can't be unique because you could interchange the two missing digits throughout the puzzle
// We do this in a loop so that if we are really unlucky and our guesses stop there from being any solution, we can easily re-run it
let grid = Grid::new();
let digit_excluded = rng.gen_range(1, 10);
for digit in 1..10 {
if digit != digit_excluded {
let cell = grid.get_random_empty_cell(rng);
cell.unwrap().set(digit);
}
}
let status = evaluate_grid_with_solve_controller(&grid, &solve_controller);
match status {
GenerateStatus::Unfinished => panic!("solve_grid_guess should never return UNFINISHED"),
_ => return status
SolveStatus::Complete(uniqueness) => {
let uniqueness = uniqueness.unwrap();
match uniqueness {
Uniqueness::Unique => {
eprintln!("Wow! A puzzle with only 8 guesses have been found");
return grid;
}
Uniqueness::NotUnique => {break grid;} // What we expect
}
}
SolveStatus::Unfinished => {panic!("evaluate_grid_with_solve_controller should never return UNFINISHED if we are making guesses")}
SolveStatus::Invalid => {continue;} // unlucky; try again
}
}
fn solve_grid_guess(grid: &Grid) -> GenerateStatus{
let smallest_cell = find_smallest_cell(grid);
let smallest_cell = match smallest_cell {
Some(cell) => cell,
None => return GenerateStatus::NoSolution
};
let possibilities = smallest_cell.get_value_possibilities().unwrap();
// Alright, we now have a grid that we can start adding more guesses onto until we find a unique solution
grid =
'outer: loop {
let cell = grid.get_random_empty_cell(rng).unwrap(); // We unwrap because if somehow we're filled each cell without finding a solution, that's reason for a panic
let cell = &*cell;
let mut cell_possibilities = cell.get_value_possibilities().expect("An empty cell has no possibilities");
let mut current_status = GenerateStatus::Unfinished;
// Let's scramble the order
cell_possibilities.shuffle(rng);
for (_index, &digit) in possibilities.iter().enumerate() {
let mut grid_copy = grid.clone();
grid_copy.get(smallest_cell.x, smallest_cell.y).unwrap().set(digit);
let status = solve_grid(&mut grid_copy);
current_status = current_status.increment(status);
for (_index, digit) in cell_possibilities.iter().enumerate() {
match current_status {
GenerateStatus::NotUniqueSolution => return GenerateStatus::NotUniqueSolution, // We have our answer; return it
GenerateStatus::UniqueSolution => {continue}, // Still looking to see if solution is unique
GenerateStatus::NoSolution => {panic!("current_status should not be NO_SOLUTION at this point")},
GenerateStatus::Unfinished => {continue} // Still looking for a solution
let mut grid_clone = grid.clone();
let cell = &*grid_clone.get(cell.x, cell.y).unwrap();
cell.set(*digit);
let status = evaluate_grid_with_solve_controller(&mut grid_clone, &solve_controller);
match status {
SolveStatus::Complete(uniqueness) => {
let uniqueness = uniqueness.unwrap();
match uniqueness {
Uniqueness::Unique => {break 'outer grid_clone;} // We're done!
Uniqueness::NotUnique => {// We need more guesses
grid = grid_clone;
continue 'outer;
}
}
// We've tried all the possibilities for this guess
match current_status {
GenerateStatus::NotUniqueSolution => return current_status,
GenerateStatus::Unfinished => return GenerateStatus::NoSolution, // nothing panned out; last guess is a bust
GenerateStatus::UniqueSolution => return current_status, // Hey! Looks good!
GenerateStatus::NoSolution => {panic!("current_status should not be NO_SOLUTION at this point")}
}
SolveStatus::Unfinished => panic!("evaluate_grid_with_solve_controller should never return UNFINISHED if making guesses"),
SolveStatus::Invalid => continue // Try another guess
}
};
// If we reach this point in the loop, then none of the possibilities for cell provided any solution
// Which means something serious happened before in the solving process - reason for panic
eprint!("No valid hints were found for puzzle\n{} at cell ({}, {})", grid, cell.x, cell.y);
panic!("Unable to continue as puzzle is invalid");
};
crate::solver::solve_grid(&mut grid);
return grid;
}
#[cfg(test)]
mod tests {
use crate::grid::*;
use crate::generator::{solve_grid, GenerateStatus};
use crate::solver::{solve_grid_with_solve_controller, SolveController, Uniqueness, SolveStatus};
use crate::generator::generate_grid;
use rand_chacha::ChaCha8Rng;
use rand_chacha::rand_core::SeedableRng;
#[test]
fn test_unique_detection() {
// A puzzle was generated that didn't actually have a unique solution; this is to make sure that the
// modified solving code can actually detect this case
let grid = Grid::new();
let mut grid = Grid::new();
grid.get(0, 0).unwrap().set(9);
grid.get(0, 7).unwrap().set(4);
@ -372,9 +290,51 @@ mod tests {
grid.get(8, 2).unwrap().set(6);
let status = solve_grid(&grid);
let status = solve_grid_with_solve_controller(&mut grid, &SolveController{
determine_uniqueness: true,
search_singles: true,
search_hidden_singles: true,
find_possibility_groups: true,
search_useful_constraint: true,
make_guesses: true
});
assert_eq!(status, GenerateStatus::NotUniqueSolution);
assert_eq!(status, SolveStatus::Complete(Some(Uniqueness::NotUnique)));
}
// There was a bug where even though mutate_grid was set to false, the end result was still solved
#[test]
fn ensure_grid_not_complete(){
let solve_controller = SolveController{
determine_uniqueness: true,
search_singles: true,
search_hidden_singles: true,
find_possibility_groups: true,
search_useful_constraint: true,
make_guesses: true
};
// Note that the puzzle itself doesn't matter
let (grid, _num_hints) = generate_grid(&mut ChaCha8Rng::seed_from_u64(123), &solve_controller);
let mut observed_empty_cell = false;
'outer : for x in 0..9 {
for y in 0..9 {
let cell = grid.get(x, y).unwrap();
let value = cell.get_value_copy();
match value {
CellValue::Fixed(_) => {}
CellValue::Unknown(_) => {
observed_empty_cell = true;
break 'outer;
}
}
}
}
assert!(observed_empty_cell);
}
}

View file

@ -1,19 +1,135 @@
use std::rc::{Rc, Weak};
use std::cell::{RefCell};
use std::collections::HashSet;
use crate::grid::{Cell, Line, Grid, CellValue, LineType};
use std::rc::Rc;
use crate::grid::{Cell, Line, Grid, CellValue};
pub static mut DEBUG: bool = false;
struct FauxCell{
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum Uniqueness {
Unique,
NotUnique
}
#[derive(Eq, PartialEq, Debug)]
pub enum SolveStatus {
Complete(Option<Uniqueness>),
Unfinished,
Invalid
}
impl SolveStatus {
fn increment(self, additional_status : SolveStatus) -> SolveStatus {
match self {
SolveStatus::Complete(uniqueness_option) => {
if uniqueness_option.is_none() {
return SolveStatus::Complete(None);
} else {
match uniqueness_option.unwrap() {
Uniqueness::NotUnique => SolveStatus::Complete(Some(Uniqueness::NotUnique)),
Uniqueness::Unique => match additional_status {
SolveStatus::Complete(_) => SolveStatus::Complete(Some(Uniqueness::NotUnique)),
SolveStatus::Unfinished => SolveStatus::Complete(Some(Uniqueness::Unique)),
SolveStatus::Invalid => SolveStatus::Complete(Some(Uniqueness::Unique))
}
}
}
}
SolveStatus::Unfinished => match additional_status {
SolveStatus::Invalid => SolveStatus::Unfinished,
_ => additional_status
},
SolveStatus::Invalid => panic!("increment() shouldn't be called on SolveStatus::Invalid")
}
}
}
pub struct SolveController {
pub determine_uniqueness: bool,
pub search_singles: bool,
pub search_hidden_singles: bool,
pub find_possibility_groups: bool,
pub search_useful_constraint: bool,
pub make_guesses: bool,
}
impl SolveController {
fn determine_uniqueness(&self) -> bool {
self.determine_uniqueness
}
fn search_singles(&self) -> bool {
self.search_singles
}
fn search_hidden_singles(&self) -> bool {
// search_hidden_singles is a special case of find_possibility_groups, so if find_possibility_groups
// is enabled then it's a waste of resources to keep this on
self.search_hidden_singles && !self.find_possibility_groups
}
fn find_possibility_groups(&self) -> bool {
self.find_possibility_groups
}
fn search_useful_constraint(&self) -> bool {
self.search_useful_constraint
}
fn make_guesses(&self) -> bool {
self.make_guesses
}
}
pub fn find_smallest_cell(grid: &Grid) -> Option<Rc<Cell>>{
// Find a cell of smallest size (in terms of possibilities) and make a guess
// Can assume that no cells of only possibility 1 exist
let mut smallest_cell : Option<Rc<Cell>> = None;
let mut smallest_size = usize::MAX;
'outer: for x in 0..9 {
for y in 0..9 {
let cell_rc = grid.get(x, y).unwrap();
let cell = &*grid.get(x, y).unwrap();
let cell_value = &*cell.value.borrow();
match cell_value {
CellValue::Unknown(possibilities) => {
if (possibilities.len() < smallest_size) && (possibilities.len() > 0){
smallest_size = possibilities.len();
smallest_cell = Some(cell_rc);
}
},
_ => {}
}
if smallest_size <= 2 {
break 'outer; // We aren't going to get smaller
}
}
}
smallest_cell
}
// Code for identify_and_process_possibility_groups (it uses it's own structs)
mod process_possibility_groups {
use crate::grid::{Line, CellValue};
use std::collections::HashSet;
use std::rc::Rc;
struct FauxCell{
index: usize,
possibilities: HashSet<u8>,
in_group: bool
}
}
impl FauxCell {
impl FauxCell {
fn len(&self) -> usize {
self.possibilities.len()
}
@ -21,11 +137,11 @@ impl FauxCell {
fn remove(&mut self, to_remove: &HashSet<u8>){
to_remove.iter().for_each(|digit| {self.possibilities.remove(digit);});
}
}
}
struct FauxLine (Vec<FauxCell>);
struct FauxLine (Vec<FauxCell>);
impl FauxLine {
impl FauxLine {
fn num_in_group(&self) -> usize {
self.0.iter().filter(|faux_cell| faux_cell.in_group).count()
@ -34,21 +150,21 @@ impl FauxLine {
fn num_out_group(&self) -> usize {
self.0.len() - self.num_in_group()
}
}
}
// See if there's a set of cells with possibilities that exclude those possibilities from other cells.
// See if there's a set of cells with possibilities that exclude those possibilities from other cells.
// Runs recursively on each group to identify all groups in case there's more than 2.
fn identify_and_process_possibility_groups(line: &Line){
pub fn identify_and_process_possibility_groups(line: &Line){
unsafe {
if DEBUG {
if super::DEBUG {
println!("Looking for possibility groups on line {:?} {}", line.line_type, line.index);
}
}
bisect_possibility_groups(line, vec![0, 1, 2, 3, 4, 5, 6, 7, 8]);
}
}
fn bisect_possibility_groups(line: &Line, cells_of_interest: Vec<usize>){
fn bisect_possibility_groups(line: &Line, cells_of_interest: Vec<usize>){
/*
Algorithm -
@ -215,6 +331,7 @@ fn bisect_possibility_groups(line: &Line, cells_of_interest: Vec<usize>){
bisect_possibility_groups(line, in_group_indices);
bisect_possibility_groups(line, out_group_indices);
}
}
}
// Search for a cell with only one possibility so that we can set it to FIXED
@ -238,28 +355,78 @@ fn search_single_possibility(line: &Line){
}
}
enum PossibilityLines {
// Count up how many times each possibility occurs in the Line. If it only occurs once, that's a hidden single that we can set
fn search_hidden_single(line: &Line){
enum Count {
None,
One(Rc<Cell>),
Many
};
impl Count {
fn increment(&self, cell: Rc<Cell>) -> Count{
match self {
Count::None => {Count::One(cell)}
Count::One(_) => {Count::Many}
Count::Many => {Count::Many}
}
}
}
let mut counts = [Count::None, Count::None, Count::None, Count::None, Count::None, Count::None, Count::None, Count::None, Count::None];
for (_index, cell) in line.vec.iter().enumerate() {
let value = &*cell.value.borrow();
match value {
CellValue::Unknown(possibilities) => {
for digit in 1..10 {
if possibilities.contains(&(digit as u8)){
counts[digit-1] = counts[digit-1].increment(Rc::clone(cell));
}
}
},
CellValue::Fixed(_) => {} // do nothing
}
}
for (digit, count) in counts.iter().enumerate() {
match count {
Count::One(cell) => {
cell.set((digit + 1) as u8);
},
_ => {}
}
}
}
mod search_useful_constraint{
use crate::grid::{Grid, Line, LineType, CellValue};
use std::rc::{Rc, Weak};
use std::cell::RefCell;
enum PossibilityLines {
Unique(usize),
Invalid,
None
}
}
impl PossibilityLines {
impl PossibilityLines {
fn is_invalid(&self) -> bool {
match &self {
PossibilityLines::Invalid => true,
_ => false
}
}
}
}
// If all the cells for a particular possibility share a same other Line, they can remove that possibility from other cells in the main line.
// If all the cells for a particular possibility share a same other Line, they can remove that possibility from other cells in the main line.
// I.e. If possibility '1' only occurs in the first row for section 0, then you can remove that possibility
// from row 0 across the other sections. Conversely, if the possibility only occurs in the first section
// for row 0, then you can remove the possibility from the rest of section 0.
fn search_useful_constraint(grid: &Grid, line: &Line){
pub fn search_useful_constraint(grid: &Grid, line: &Line){
unsafe {
if DEBUG {
if super::DEBUG {
println!("Searching for a useful constraint on line {:?} {}", line.line_type, line.index);
}
}
@ -325,10 +492,10 @@ fn search_useful_constraint(grid: &Grid, line: &Line){
}
}
}
}
// initial_line_type and initial_line_index are to identify the cells that should NOT have their possibilities removed
fn remove_possibilities_line(line: &Rc<RefCell<Line>>, digit_to_remove: u8, initial_line_type: &LineType, initial_line_index: usize) {
// initial_line_type and initial_line_index are to identify the cells that should NOT have their possibilities removed
fn remove_possibilities_line(line: &Rc<RefCell<Line>>, digit_to_remove: u8, initial_line_type: &LineType, initial_line_index: usize) {
let line = &*(&**line).borrow();
for (_index, cell) in line.vec.iter().enumerate() {
@ -373,10 +540,10 @@ fn remove_possibilities_line(line: &Rc<RefCell<Line>>, digit_to_remove: u8, init
cell.set_value(new_value);
}
}
}
// We detected
fn process_possibility_line(possibility_line: PossibilityLines, line: &Weak<RefCell<Line>>) -> PossibilityLines {
// We detected a useful constraint
fn process_possibility_line(possibility_line: PossibilityLines, line: &Weak<RefCell<Line>>) -> PossibilityLines {
let line = line.upgrade().unwrap();
let line = &*(&*line).borrow();
@ -391,10 +558,12 @@ fn process_possibility_line(possibility_line: PossibilityLines, line: &Weak<RefC
}
}
}
}
}
fn solve_line(grid: &Grid, line: &Line){
fn solve_line(grid: &Grid, line: &Line, solve_controller: &SolveController){
unsafe {
if DEBUG {
println!("Solving {:?} {}", line.line_type, line.index);
@ -403,91 +572,89 @@ fn solve_line(grid: &Grid, line: &Line){
line.do_update.replace(false);
if solve_controller.search_singles() {
unsafe {
if DEBUG {
println!("Searching for singles on line {:?} of {}\n{}", line.line_type, line.index, grid);
}
}
search_single_possibility(line);
unsafe {
if DEBUG {
println!("{}", grid);
}
}
identify_and_process_possibility_groups(line);
if solve_controller.search_hidden_singles() {
unsafe {
if DEBUG {
println!("{}", grid);
println!("Searching for hidden singles on line {:?} of {}\n{}", line.line_type, line.index, grid);
}
}
search_hidden_single(line);
}
search_useful_constraint(grid, line);
if solve_controller.find_possibility_groups() {
unsafe {
if DEBUG {
println!("{}", grid);
println!("Searching for possibility groups on line {:?} of {}\n{}", line.line_type, line.index, grid);
}
}
process_possibility_groups::identify_and_process_possibility_groups(line);
}
if solve_controller.search_useful_constraint() {
unsafe {
if DEBUG {
println!("Searching for useful constraints on line {:?} of {}\n{}", line.line_type, line.index, grid);
}
}
search_useful_constraint::search_useful_constraint(grid, line);
}
}
pub fn find_smallest_cell(grid: &Grid) -> Option<Rc<Cell>>{
// Find a cell of smallest size (in terms of possibilities) and make a guess
// Can assume that no cells of only possibility 1 exist
pub fn solve_grid(grid: &mut Grid) -> SolveStatus {
// By default we enable everything
let solve_controller = SolveController {
determine_uniqueness: true,
search_singles: true,
search_hidden_singles: true,
find_possibility_groups: true,
search_useful_constraint: true,
make_guesses: true
};
let mut smallest_cell : Option<Rc<Cell>> = None;
let mut smallest_size = usize::MAX;
'outer: for x in 0..9 {
for y in 0..9 {
let cell_rc = grid.get(x, y).unwrap();
let cell = &*grid.get(x, y).unwrap();
let cell_value = &*cell.value.borrow();
match cell_value {
CellValue::Unknown(possibilities) => {
if (possibilities.len() < smallest_size) && (possibilities.len() > 0){
smallest_size = possibilities.len();
smallest_cell = Some(cell_rc);
}
},
_ => {}
}
if smallest_size <= 2 {
break 'outer; // We aren't going to get smaller
}
}
}
smallest_cell
solve_grid_with_solve_controller(grid, &solve_controller)
}
pub enum SolveStatus {
Complete,
Unfinished,
Invalid
}
pub fn solve_grid(grid: &mut Grid) -> SolveStatus{
pub fn solve_grid_with_solve_controller(grid: &mut Grid, solve_controller: &SolveController) -> SolveStatus{
// Code is kind of messy so here it goes - solve_grid first tries to solve without any guesses
// If that's not enough and a guess is required, then solve_grid_guess is called
// solve_grid_guess runs through all the possibilities for the smallest cell, trying to solve them
// through calling this function.
// solve_grid_no_guess tries to solve without any guesses.
// Of course this is if the solve_controller lets everything be used for solving it
let mut status = solve_grid_no_guess(grid);
let mut status = solve_grid_no_guess(grid, solve_controller);
status = match status {
SolveStatus::Unfinished => {
solve_grid_guess(grid)
if solve_controller.make_guesses() {
solve_grid_guess(grid, solve_controller)
} else {
SolveStatus::Complete(Some(Uniqueness::NotUnique)) // solve_grid_no_guess couldn't finish and we can't make guesses, so it's 'not unique' in the sense that we need more guesses
}
},
_ => {status}
};
match status {
SolveStatus::Unfinished => panic!("solve_grid_guess should never return UNFINISHED"),
_ => return status
}
return status;
}
pub fn solve_grid_no_guess(grid: &mut Grid) -> SolveStatus{
// Similar to solve_grid_with_solve_controller except that we don't modify the input Grid; we only determine SolveStatus
pub fn evaluate_grid_with_solve_controller(grid: &Grid, solve_controller: &SolveController) -> SolveStatus{
let mut mut_grid = grid.clone();
return solve_grid_with_solve_controller(&mut mut_grid, solve_controller);
}
pub fn solve_grid_no_guess(grid: &mut Grid, solve_controller: &SolveController) -> SolveStatus{
loop {
let mut ran_something = false;
@ -495,7 +662,7 @@ pub fn solve_grid_no_guess(grid: &mut Grid) -> SolveStatus{
//println!("Processing row {}", _index);
let line_ref = &*(&**line_ref).borrow();
if line_ref.do_update() {
solve_line(&grid, line_ref);
solve_line(&grid, line_ref, solve_controller);
ran_something = true;
}
}
@ -503,7 +670,7 @@ pub fn solve_grid_no_guess(grid: &mut Grid) -> SolveStatus{
//println!("Processing column {}", _index);
let line_ref = &*(&**line_ref).borrow();
if line_ref.do_update() {
solve_line(&grid, line_ref);
solve_line(&grid, line_ref, solve_controller);
ran_something = true;
}
}
@ -511,7 +678,7 @@ pub fn solve_grid_no_guess(grid: &mut Grid) -> SolveStatus{
//println!("Processing section {}", _index);
let line_ref = &*(&**line_ref).borrow();
if line_ref.do_update() {
solve_line(&grid, line_ref);
solve_line(&grid, line_ref, solve_controller);
ran_something = true;
}
}
@ -542,13 +709,15 @@ pub fn solve_grid_no_guess(grid: &mut Grid) -> SolveStatus{
}
if appears_complete {
return SolveStatus::Complete;
// Solving by logic rules only implies Uniqueness;
// may be overridden if guesses were made
return SolveStatus::Complete(Some(Uniqueness::Unique));
}
}
}
fn solve_grid_guess(grid: &mut Grid) -> SolveStatus{
fn solve_grid_guess(grid: &mut Grid, solve_controller: &SolveController) -> SolveStatus{
let smallest_cell = find_smallest_cell(grid);
let smallest_cell = match smallest_cell {
Some(cell) => cell,
@ -556,26 +725,60 @@ fn solve_grid_guess(grid: &mut Grid) -> SolveStatus{
};
let possibilities = smallest_cell.get_value_possibilities().unwrap();
let mut current_status = SolveStatus::Unfinished;
let mut grid_solution = None;
for (_index, &digit) in possibilities.iter().enumerate() {
let mut grid_copy = grid.clone();
grid_copy.get(smallest_cell.x, smallest_cell.y).unwrap().set(digit);
let status = solve_grid(&mut grid_copy);
let status = solve_grid_with_solve_controller(&mut grid_copy, solve_controller);
// Keep a copy of grid_copy in case we later mutate grid with it
match status {
SolveStatus::Complete => {
grid.clone_from(&grid_copy);
return SolveStatus::Complete;
SolveStatus::Complete(_) => {
grid_solution = Some(grid_copy);
},
_ => {}
}
current_status = current_status.increment(status);
match current_status {
SolveStatus::Complete(uniqueness) => {
if !solve_controller.determine_uniqueness() {
current_status = SolveStatus::Complete(None); // be explicit we don't know
break; // no point in continuing
}
let uniqueness = uniqueness.expect("We're looking for uniqueness and yet an earlier function didn't make a claim");
match uniqueness {
Uniqueness::Unique => {continue;} // gotta keep on checking
Uniqueness::NotUnique => {
break; // We can stop looking as we already found at least two solutions
}
}
}
SolveStatus::Unfinished => {continue} // Keep looking for a solution
SolveStatus::Invalid => panic!("current_status should not be INVALID at this point")
}
}
// We've finished the for-loop
match current_status {
SolveStatus::Complete(_) => {
grid.clone_from(&grid_solution.expect("grid_solution should have value if we found a solution"));
},
SolveStatus::Unfinished => {
panic!("solve_grid should never return UNFINISHED")
current_status = SolveStatus::Invalid; // We can now say Invalid
},
SolveStatus::Invalid => {
continue;
}
}
SolveStatus::Invalid => {}
}
return SolveStatus::Invalid;
return current_status;
}
@ -619,7 +822,7 @@ mod tests {
let line = grid.rows.first().unwrap();
let line = &*(**line).borrow();
identify_and_process_possibility_groups(line);
process_possibility_groups::identify_and_process_possibility_groups(line);
assert_eq!(CellValue::Unknown(vec![1, 2, 3]), grid.get(0, 0).unwrap().get_value_copy());
}
@ -643,7 +846,7 @@ mod tests {
let line = grid.rows.first().unwrap();
let line = &*(**line).borrow();
search_useful_constraint(&grid, line);
search_useful_constraint::search_useful_constraint(&grid, line);
assert_eq!(CellValue::Unknown(vec![4, 5, 6, 7, 8, 9]), grid.get(2, 0).unwrap().get_value_copy());
}
@ -676,11 +879,38 @@ mod tests {
let line = grid.columns.get(1).unwrap();
let line = &*(**line).borrow();
search_useful_constraint(&grid, line);
search_useful_constraint::search_useful_constraint(&grid, line);
assert_eq!(CellValue::Unknown(vec![1, 3, 4, 5, 9]), grid.get(1, 0).unwrap().get_value_copy());
}
#[test]
fn test_hidden_single() {
let grid = Grid::new();
// In Row 0 there should be only one spot for 1s and 2s to be set, even though every cell will
// have possibilities for values 3 - 9
grid.get(1, 5).unwrap().set(1);
grid.get(2, 6).unwrap().set(1);
grid.get(5, 2).unwrap().set(1);
grid.get(6, 1).unwrap().set(1);
grid.get(1, 6).unwrap().set(2);
grid.get(2, 5).unwrap().set(2);
grid.get(5, 1).unwrap().set(2);
grid.get(6, 0).unwrap().set(2);
let first_row = grid.rows.get(0).unwrap();
let first_row = &*(**first_row).borrow();
search_hidden_single(&first_row);
assert_eq!(CellValue::Fixed(1), grid.get(0, 0).unwrap().get_value_copy());
assert_eq!(CellValue::Fixed(2), grid.get(0, 2).unwrap().get_value_copy());
}
}